POSIX requires that broadcast sends will only be allowed if the
SO_BROADCAST socket option was set on the socket.
Also, broadcast sends to protocols that do not support broadcast (like
TCP), should always fail.
Currently, ephemeral port allocation is handled by the
allocate_local_port_if_needed() and protocol_allocate_local_port()
methods. Actually binding the socket to an address (which means
inserting the socket/address pair into a global map) is performed either
in protocol_allocate_local_port() (for ephemeral ports) or in
protocol_listen() (for non-ephemeral ports); the latter will fail with
EADDRINUSE if the address is already used by an existing pair present in
the map.
There used to be a bug where for listen() without an explicit bind(),
the port allocation would conflict with itself: first an ephemeral port
would get allocated and inserted into the map, and then
protocol_listen() would check again for the port being free, find the
just-created map entry, and error out. This was fixed in commit
01e5af487f by passing an additional flag
did_allocate_port into protocol_listen() which specifies whether the
port was just allocated, and skipping the check in protocol_listen() if
the flag is set.
However, this only helps if the socket is bound to an ephemeral port
inside of this very listen() call. But calling bind(sin_port = 0) from
userspace should succeed and bind to an allocated ephemeral port, in the
same was as using an unbound socket for connect() does. The port number
can then be retrieved from userspace by calling getsockname (), and it
should be possible to either connect() or listen() on this socket,
keeping the allocated port number. Also, calling bind() when already
bound (either explicitly or implicitly) should always result in EINVAL.
To untangle this, introduce an explicit m_bound state in IPv4Socket,
just like LocalSocket has already. Once a socket is bound, further
attempt to bind it fail. Some operations cause the socket to implicitly
get bound to an (ephemeral) address; this is implemented by the new
ensure_bound() method. The protocol_allocate_local_port() method is
gone; it is now up to a protocol to assign a port to the socket inside
protocol_bind() if it finds that the socket has local_port() == 0.
protocol_bind() is now called in more cases, such as inside listen() if
the socket wasn't bound before that.
There is a big mix of LockRefPtrs all over the Networking subsystem, as
well as lots of room for improvements with our locking patterns, which
this commit will not pursue, but will give a good start for such work.
To deal with this situation, we change the following things:
- Creating instances of NetworkAdapter should always yield a non-locking
NonnullRefPtr. Acquiring an instance from the NetworkingManagement
should give a simple RefPtr,as giving LockRefPtr does not really
protect from concurrency problems in such case.
- Since NetworkingManagement works with normal RefPtrs we should
protect all instances of RefPtr<NetworkAdapter> with SpinlockProtected
to ensure references are gone unexpectedly.
- Protect the so_error class member with a proper spinlock. This happens
to be important because the clear_so_error() method lacked any proper
locking measures. It also helps preventing a possible TOCTOU when we
might do a more fine-grained locking in the Socket code, so this could
be definitely a start for this.
- Change unnecessary LockRefPtr<PacketWithTimestamp> in the structure
of OutgoingPacket to a simple RefPtr<PacketWithTimestamp> as the whole
list should be MutexProtected.
This was mostly straightforward, as all the storage locations are
guarded by some related mutex.
The use of old-school associated mutexes instead of MutexProtected
is unfortunate, but the process to modernize such code is ongoing.
Until now, our kernel has reimplemented a number of AK classes to
provide automatic internal locking:
- RefPtr
- NonnullRefPtr
- WeakPtr
- Weakable
This patch renames the Kernel classes so that they can coexist with
the original AK classes:
- RefPtr => LockRefPtr
- NonnullRefPtr => NonnullLockRefPtr
- WeakPtr => LockWeakPtr
- Weakable => LockWeakable
The goal here is to eventually get rid of the Lock* classes in favor of
using external locking.
This argument is always set to description.is_blocking(), but
description is also given as a separate argument, so there's no point
to piping it through separately.
This was used to return a pre-locked UDPSocket in one place, but there
was really no need for that mechanism in the first place since the
caller ends up locking the socket anyway.
Before this commit, we only checked the receive buffer on the socket,
which is unused on datagram streams. Now we return the actual size of
the datagram without the protocol headers, which required the protocol
to tell us what the size of the payload is.
We now use AK::Error and AK::ErrorOr<T> in both kernel and userspace!
This was a slightly tedious refactoring that took a long time, so it's
not unlikely that some bugs crept in.
Nevertheless, it does pass basic functionality testing, and it's just
real nice to finally see the same pattern in all contexts. :^)
Sockets remember their last error code in the SO_ERROR field, so we need
to take special care to remember this when returning an error.
This patch adds a SOCKET_TRY() that works like TRY() but also calls
set_so_error() on the failure path.
There's probably a lot more code that should be using this, but that's
outside the scope of this patch.
The IPv4Socket requires a DoubleBuffer for storage of any data it
received on the socket. However it was previously using the default
constructor which can not observe allocation failure. Address this by
plumbing the receive buffer through the various derived classes.
This commit converts naked `new`s to `AK::try_make` and `AK::try_create`
wherever possible. If the called constructor is private, this can not be
done, so we instead now use the standard-defined and compiler-agnostic
`new (nothrow)`.
Previously we'd allocate buffers when sending packets. This patch
avoids these allocations by using the NetworkAdapter's packet queue.
At the same time this also avoids copying partially constructed
packets in order to prepend Ethernet and/or IPv4 headers. It also
properly truncates UDP and raw IP packets.
Problem:
- `static` variables consume memory and sometimes are less
optimizable.
- `static const` variables can be `constexpr`, usually.
- `static` function-local variables require an initialization check
every time the function is run.
Solution:
- If a global `static` variable is only used in a single function then
move it into the function and make it non-`static` and `constexpr`.
- Make all global `static` variables `constexpr` instead of `const`.
- Change function-local `static const[expr]` variables to be just
`constexpr`.
When reading UDP packets from userspace with recvmsg()/recv() we
would hit a VERIFY() if the supplied buffer is smaller than the
received UDP packet. Instead we should just return truncated data
to the caller.
This can be reproduced with:
$ dd if=/dev/zero bs=1k count=1 | nc -u 192.168.3.190 68
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
..and allow implicit creation of KResult and KResultOr from ErrnoCode.
This means that kernel functions that return those types can finally
do "return EINVAL;" and it will just work.
There's a handful of functions that still deal with signed integers
that should be converted to return KResults.
Problem:
- `(void)` simply casts the expression to void. This is understood to
indicate that it is ignored, but this is really a compiler trick to
get the compiler to not generate a warning.
Solution:
- Use the `[[maybe_unused]]` attribute to indicate the value is unused.
Note:
- Functions taking a `(void)` argument list have also been changed to
`()` because this is not needed and shows up in the same grep
command.
The overrides of this function don't need to know how the original
packet was stored, so let's just give them a ReadonlyBytes view of
the raw packet data.
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
MemoryManager cannot use the Singleton class because
MemoryManager::initialize is called before the global constructors
are run. That caused the Singleton to be re-initialized, causing
it to create another MemoryManager instance.
Fixes#3226