Previously we could get a raw pointer to a Mount object which might be
invalid when actually dereferencing it.
To ensure this could not happen, we should just use a callback that will
be used immediately after finding the appropriate Mount entry, while
holding the mount table lock.
We don't really need this method anymore, because we could just try to
find the mount entry based on the given mount point host custody.
This also allows us to remove the is_vfs_root and root_inode_id methods
from the VirtualFileSystem class.
We could easily encounter a case where we do the following:
```
mkdir -p /tmp2
mount /dev/hda /tmp2
```
would produce a bug that doing `ls /tmp2/tmp2` will give the contents
on `/dev/hda` ext2 root directory and also on `/tmp2/tmp2/tmp2` and so
on.
To prevent this, we must compare the current custody against each mount
entry's custody to ensure their paths match.
This is not useful, as we have literally zero knowledge about where this
inode is actually located at with respect to the entire global path tree
so we could easily encounter a case where we do the following:
```
mkdir -p /tmp2
mount /dev/hda /tmp2
```
and when traversing the /tmp2 directory entries, we will see the root
inode of /dev/hda on "/tmp2/tmp2", even if it was not mounted.
Therefore, we should just plainly give the raw directory entries as they
are written "on the disk". Anything else that needs to exactly know if
there's an underlying mounted filesystem, can just use the stat syscall
instead.
This ensures that the host mount point custody path is not the same like
the new to-be-mounted custody.
A scenario that could happen before adding this check is:
```
mkdir -p /tmp2
mount /dev/hda /tmp2/
mount /dev/hda /tmp2/
mount /dev/hda /tmp2/ # this will fail here
```
and after adding this check, the following scenario is now this:
```
mkdir -p /tmp2
mount /dev/hda /tmp2/
mount /dev/hda /tmp2/ # this will fail here
mount /dev/hda /tmp2/ # this will fail here too
```
This is correct since unmount doesn't treat bind mounts specially. If we
don't do this, unmounting bind mounts will call
prepare_for_last_unmount() on the guest FS much too early, which will
most likely fail due to a busy file system.
This is a preparation before we can create a usable mechanism to use
filesystem-specific mount flags.
To keep some compatibility with userland code, LibC and LibCore mount
functions are kept being usable, but now instead of doing an "atomic"
syscall, they do multiple syscalls to perform the complete procedure of
mounting a filesystem.
The FileBackedFileSystem IntrusiveList in the VFS code is now changed to
be protected by a Mutex, because when we mount a new filesystem, we need
to check if a filesystem is already created for a given source_fd so we
do a scan for that OpenFileDescription in that list. If we fail to find
an already-created filesystem we create a new one and register it in the
list if we successfully mounted it. We use a Mutex because we might need
to initiate disk access during the filesystem creation, which will take
other mutexes in other parts of the kernel, therefore making it not
possible to take a spinlock while doing this.
This has KString, KBuffer, DoubleBuffer, KBufferBuilder, IOWindow,
UserOrKernelBuffer and ScopedCritical classes being moved to the
Kernel/Library subdirectory.
Also, move the panic and assertions handling code to that directory.
When deleting a directory, the rmdir syscall should fail if the path was
unveiled without the 'c' permission. This matches the same behavior that
OpenBSD enforces when doing this kind of operation.
When deleting a file, the unlink syscall should fail if the path was
unveiled without the 'w' permission, to ensure that userspace is aware
of the possibility of removing a file only when the path was unveiled as
writable.
When using the userdel utility, we now unveil that directory path with
the unveil 'c' permission so removal of an account home directory is
done properly.
"Wherever applicable" = most places, actually :^), especially for
networking and filesystem timestamps.
This includes changes to unzip, which uses DOSPackedTime, since that is
changed for the FAT file systems.
That's what this class really is; in fact that's what the first line of
the comment says it is.
This commit does not rename the main files, since those will contain
other time-related classes in a little bit.
We have a problem with the original utimensat syscall because when we
do call LibC futimens function, internally we provide an empty path,
and the Kernel get_syscall_path_argument method will detect this as an
invalid path.
This happens to spit an error for example in the touch utility, so if a
user is running "touch non_existing_file", it will create that file, but
the user will still see an error coming from LibC futimens function.
This new syscall gets an open file description and it provides the same
functionality as utimensat, on the specified open file description.
The new syscall will be used later by LibC to properly implement LibC
futimens function so the situation described with relation to the
"touch" utility could be fixed.
There was only one permanent storage location for these: as a member
in the Mount class.
That member is never modified after Mount initialization, so we don't
need to worry about races there.
This patch switches away from {Nonnull,}LockRefPtr to the non-locking
smart pointers throughout the kernel.
I've looked at the handful of places where these were being persisted
and I don't see any race situations.
Note that the process file descriptor table (Process::m_fds) was already
guarded via MutexProtected.
Before of this patch, we looked at the unveil data of the FinalizerTask,
which naturally doesn't have any unveil restrictions, therefore allowing
an unveil bypass for a process that enabled performance coredumps.
To ensure we always check the dumped process unveil data, an option to
pass a Process& has been added to a couple of methods in the class of
VirtualFileSystem.
This is considered somewhat an abstraction layer violation, because we
should always let userspace to decide on the root filesystem mount flags
because it allows the user to configure the mount table to preferences
that they desire.
Now that SystemServer is modified to re-mount the root mount with the
desired flags, we can just mount the root filesystem without assuming
special flags.
Resolves issue where a panic would occur if the file system failed to
initialize or mount, due to how the FileSystem was already added to
VFS's list. The newly-created FileSystem destructor would fail as a
result of the object still remaining in the IntrusiveList.
This step would ideally not have been necessary (increases amount of
refactoring and templates necessary, which in turn increases build
times), but it gives us a couple of nice properties:
- SpinlockProtected inside Singleton (a very common combination) can now
obtain any lock rank just via the template parameter. It was not
previously possible to do this with SingletonInstanceCreator magic.
- SpinlockProtected's lock rank is now mandatory; this is the majority
of cases and allows us to see where we're still missing proper ranks.
- The type already informs us what lock rank a lock has, which aids code
readability and (possibly, if gdb cooperates) lock mismatch debugging.
- The rank of a lock can no longer be dynamic, which is not something we
wanted in the first place (or made use of). Locks randomly changing
their rank sounds like a disaster waiting to happen.
- In some places, we might be able to statically check that locks are
taken in the right order (with the right lock rank checking
implementation) as rank information is fully statically known.
This refactoring even more exposes the fact that Mutex has no lock rank
capabilites, which is not fixed here.
We were already handling the rmdir("..") case by refusing to remove
directories that were not empty.
This patch removes a FIXME from January 2019 and adds a test. :^)
Dr. POSIX says that we should reject attempts to rmdir() the file named
"." so this patch does exactly that. We also add a test.
This solves a FIXME from January 2019. :^)
The fact that we used a Vector meant that even if creating a Mount
object succeeded, we were still at a risk that appending to the actual
mounts Vector could fail due to OOM condition. To guard against this,
the mount table is now an IntrusiveList, which always means that when
allocation of a Mount object succeeded, then inserting that object to
the list will succeed, which allows us to fail early in case of OOM
condition.
This solves one of the security issues being mentioned in issue #15996.
We simply don't allow creating hardlinks on paths that were not unveiled
as writable to prevent possible bypass on a certain path that was
unveiled as non-writable.
Because the ".." entry in a directory is a separate inode, if a
directory is renamed to a new location, then we should update this entry
the point to the new parent directory as well.
Co-authored-by: Liav A <liavalb@gmail.com>
If a program needs to execute a dynamic executable program, then it
should unveil /usr/lib/Loader.so by itself and not rely on the Kernel to
allow using this binary without any sense of respect to unveil promises
being made by the running parent program.
This commit reached that goal of "safely discarding" a filesystem by
doing the following:
1. Stop using the s_file_system_map HashMap as it was an unsafe measure
to access pointers of FileSystems. Instead, make sure to register all
FileSystems at the VFS layer, with an IntrusiveList, to avoid problems
related to OOM conditions.
2. Make sure to cleanly remove the DiskCache object from a BlockBased
filesystem, so the destructor of such object will not need to do that in
the destruction point.
3. For ext2 filesystems, don't cache the root inode at m_inode_cache
HashMap. The reason for this is that when unmounting an ext2 filesystem,
we lookup at the cache to see if there's a reference to a cached inode
and if that's the case, we fail with EBUSY. If we keep the m_root_inode
also being referenced at the m_inode_cache map, we have 2 references to
that object, which will lead to fail with EBUSY. Also, it's much simpler
to always ask for a root inode and get it immediately from m_root_inode,
instead of looking up the cache for that inode.
The idea is to enable mounting FileSystem objects across multiple mounts
in contrast to what happened until now - each mount has its own unique
FileSystem object being attached to it.
Considering a situation of mounting a block device at 2 different mount
points at in system, there were a couple of critical flaws due to how
the previous "design" worked:
1. BlockBasedFileSystem(s) that pointed to the same actual device had a
separate DiskCache object being attached to them. Because both instances
were not synchronized by any means, corruption of the filesystem is most
likely achieveable by a simple cache flush of either of the instances.
2. For superblock-oriented filesystems (such as the ext2 filesystem),
lack of synchronization between both instances can lead to severe
corruption in the superblock, which could render the entire filesystem
unusable.
3. Flags of a specific filesystem implementation (for example, with xfs
on Linux, one can instruct to mount it with the discard option) must be
honored across multiple mounts, to ensure expected behavior against a
particular filesystem.
This patch put the foundations to start fix the issues mentioned above.
However, there are still major issues to solve, so this is only a start.
This flag doesn't conform to any POSIX standard nor is found in any OS
out there. The idea behind this mount flag is to ensure that only
non-regular files will be placed in a filesystem, which includes device
nodes, symbolic links, directories, FIFOs and sockets. Currently, the
only valid case for using this mount flag is for TmpFS instances, where
we want to mount a TmpFS but disallow any kind of regular file and only
allow other types of files on the filesystem.
We make these methods non-virtual because we want to ensure we properly
enforce locking of the m_inode_lock mutex. Also, for write operations,
we want to call prepare_to_write_data before the actual write. The
previous design required us to ensure the callers do that at various
places which lead to hard-to-find bugs. By moving everything to a place
where we call prepare_to_write_data only once, we eliminate a possibilty
of forgeting to call it on some code path in the kernel.
Instead of having three separate APIs (one for each timestamp),
there's now only Inode::update_timestamps() and it takes 3x optional
timestamps. The non-empty timestamps are updated while holding the inode
mutex, and the outside world no longer has to look at intermediate
timestamp states.
Instead of getting credentials from Process::current(), we now require
that they be provided as input to the various VFS functions.
This ensures that an atomic set of credentials is used throughout an
entire VFS operation.