This patch adds the NGROUPS_MAX constant and enforces it in
sys$setgroups() to ensure that no process has more than 32 supplementary
group IDs.
The number doesn't mean anything in particular, just had to pick a
number. Perhaps one day we'll have a reason to change it.
Previously the routing table did not store the route flags. This
adds basic support and exposes them in the /proc directory so that a
userspace caller can query the route and identify the type of each
route.
Previously the system had no concept of assigning different routes for
different destination addresses as the default gateway IP address was
directly assigned to a network adapter. This default gateway was
statically assigned and any update would remove the previously existing
route.
This patch is a beginning step towards implementing #180. It implements
a simple global routing table that is referenced during the routing
process. With this implementation it is now possible for a user or
service (i.e. DHCP) to dynamically add routes to the table.
The routing table will select the most specific route when possible. It
will select any direct match between the destination and routing entry
addresses. If the destination address overlaps between multiple entries,
the Kernel will use the longest prefix match, or the longest number of
matching bits between the destination address and the routing address.
In the event that there is no entries found for a specific destination
address, this implementation supports entries for a default route to be
set for any specified interface.
This is a small first step towards enhancing the system's routing
capabilities. Future enhancements would include referencing a
configuration file at boot to load pre-defined static routes.
Move the definitions for maximum argument and environment size to
Process.h from execve.cpp. This allows sysconf(_SC_ARG_MAX) to return
the actual argument maximum of 128 KiB to userspace.
Add them in `<Kernel/API/Device.h>` and use these to provides
`{makedev,major,minor}` in `<sys/sysmacros.h>`. It aims to be more in
line with other Unix implementations and avoid code duplication in user
land.
Much like the existing in6addr_any global and the IN6ADDR_ANY_INIT
macro, our LibC is also expected to export the in6addr_loopback global
and the IN6ADDR_LOOPBACK_INIT constant.
These were found by the stress-ng port.
This feature was introduced in version 4.17 of the Linux kernel, and
while it's not specified by POSIX, I think it will be a nice addition to
our system.
MAP_FIXED_NOREPLACE provides a less error-prone alternative to
MAP_FIXED: while regular fixed mappings would cause any intersecting
ranges to be unmapped, MAP_FIXED_NOREPLACE returns EEXIST instead. This
ensures that we don't corrupt our process's address space if something
is already at the requested address.
Note that the more portable way to do this is to use regular
MAP_ANONYMOUS, and check afterwards whether the returned address matches
what we wanted. This, however, has a large performance impact on
programs like Wine which try to reserve large portions of the address
space at once, as the non-matching addresses have to be unmapped
separately.
Add the `posix_madvise(..)` LibC implementation that just forwards
to the normal `madvise(..)` implementation.
Also define a few POSIX_MADV_DONTNEED and POSIX_MADV_NORMAL as they
are part of the POSIX API for `posix_madvise(..)`.
This is needed by the `fio` port.
These 2 members are required by POSIX and are also used by some ports.
Zero is a valid value for both of these, so no further work to support
them is required.
The sa_family field in SIOCGIFHWADDR specifies the underlying network
interface's device type, this is hardcoded to generic "Ethernet" right
now, as we don't have a nice way to query it.
Not much to say here, this is an implementation of this call that
accesses the actual limit constant that's used by the VirtualFileSystem
class.
As a side note, this is required for my eventual Qt port.
This fixes at least half of our LibC includes in the kernel. The source
of truth for errno codes and their description strings now lives in
Kernel/API/POSIX/errno.h as an enumeration, which LibC includes.