This syscall allows a parent process to disown a child process, setting
its parent PID to 0.
Unparented processes are automatically reaped by the kernel upon exit,
and no sys$waitid() is required. This will make it much nicer to do
spawn-and-forget which is common in the GUI environment.
Add an extra out-parameter to shbuf_get() that receives the size of the
shared buffer. That way we don't need to make a separate syscall to
get the size, which we always did immediately after.
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
This patch introduces a syscall:
int set_thread_boost(int tid, int amount)
You can use this to add a permanent boost value to the effective thread
priority of any thread with your UID (or any thread in the system if
you are the superuser.)
This is quite crude, but opens up some interesting opportunities. :^)
Threads now have numeric priorities with a base priority in the 1-99
range.
Whenever a runnable thread is *not* scheduled, its effective priority
is incremented by 1. This is tracked in Thread::m_extra_priority.
The effective priority of a thread is m_priority + m_extra_priority.
When a runnable thread *is* scheduled, its m_extra_priority is reset to
zero and the effective priority returns to base.
This means that lower-priority threads will always eventually get
scheduled to run, once its effective priority becomes high enough to
exceed the base priority of threads "above" it.
The previous values for ThreadPriority (Low, Normal and High) are now
replaced as follows:
Low -> 10
Normal -> 30
High -> 50
In other words, it will take 20 ticks for a "Low" priority thread to
get to "Normal" effective priority, and another 20 to reach "High".
This is not perfect, and I've used some quite naive data structures,
but I think the mechanism will allow us to build various new and
interesting optimizations, and we can figure out better data structures
later on. :^)
This patch implements a simple version of the futex (fast userspace
mutex) API in the kernel and uses it to make the pthread_cond_t API's
block instead of busily sched_yield().
An arbitrary userspace address is passed to the kernel as a "token"
that identifies the futex and you can then FUTEX_WAIT and FUTEX_WAKE
that specific userspace address.
FUTEX_WAIT corresponds to pthread_cond_wait() and FUTEX_WAKE is used
for pthread_cond_signal() and pthread_cond_broadcast().
I'm pretty sure I'm missing something in this implementation, but it's
hopefully okay for a start. :^)
The kernel now supports basic profiling of all the threads in a process
by calling profiling_enable(pid_t). You finish the profiling by calling
profiling_disable(pid_t).
This all works by recording thread stacks when the timer interrupt
fires and the current thread is in a process being profiled.
Note that symbolication is deferred until profiling_disable() to avoid
adding more noise than necessary to the profile.
A simple "/bin/profile" command is included here that can be used to
start/stop profiling like so:
$ profile 10 on
... wait ...
$ profile 10 off
After a profile has been recorded, it can be fetched in /proc/profile
There are various limits (or "bugs") on this mechanism at the moment:
- Only one process can be profiled at a time.
- We allocate 8MB for the samples, if you use more space, things will
not work, and probably break a bit.
- Things will probably fall apart if the profiled process dies during
profiling, or while extracing /proc/profile
It's now possible to load a .o file into the kernel via a syscall.
The kernel will perform all the necessary ELF relocations, and then
call the "module_init" symbol in the loaded module.