Added the call to generate_available_values(), then realized it is the
exact same as the existing, manually written implementation. So let's
use the new utility.
Intl.NumberFormat is meant to format both Number and BigInt types. To
prepare for formatting BigInt types, this generalizes our NumberFormat
implementation to operate on Value instances rather than doubles. All
arithmetic is moved to static helpers that can now be updated with
BigInt semantics.
Even if the PIC was disabled it can still generate noise (spurious IRQs)
so we need to register two handlers for handling such cases.
Also, we declare interrupt service routine offset 0x20 to 0x2f as
reserved, so when the PIC is disabled, we can handle spurious IRQs from
the PIC at separate handlers.
The hard part of parsing them in import statements and calls was already
done so this is just removing some check which threw before on
assertions. And filtering the assertions based on the result of a new
host hook.
Because we can have arbitrary in- and export names with strings we can
have '*' and '' which means using '*' as an indicating namespace imports
failed / behaved incorrectly for string imports '*'.
We now use more specific types to indicate these special states instead
of these 'magic' string values.
Do note that 'default' is not actually a magic string value but one
specified by the spec. And you can in fact export the default value by
doing: `export { 1 as default }`.
At the end of sys$execve(), we perform a context switch from the old
executable into the new executable.
However, the Kernel::Thread object we are switching to is the *same*
thread as the one we are switching from. So we must not assume the
from_thread and to_thread are different threads.
We had a bug caused by this misconception, where the "from" thread would
always get marked as "inactive" when switching to a new thread.
This meant that threads would always get switched into "inactive" mode
on first context switch into them.
If a thread then tried blocking on a kernel mutex within its first time
slice, we'd end up in Thread::block(Mutex&) with an inactive thread.
Once a thread is inactive, the scheduler believes it's okay to
reactivate the thread (by scheduling it.) If a thread got re-scheduled
prematurely while setting up a mutex block, things would fall apart and
we'd crash in Thread::block() due to the thread state being "Runnable"
instead of the expected "Running".
Move this architecture-specific sanity check (IOPL must be 0) out of
Scheduler and into the x86 enter_thread_context(). Also do this for
every thread and not just userspace ones.
It's more accurate to say that we're blocking on a mutex, rather than
blocking on a lock. The previous terminology made sense when this code
was using something called Kernel::Lock, but since it was renamed to
Kernel::Mutex, this updates brings the language back in sync.
It was annoyingly hard to spot these when we were using them with
different amounts of qualification everywhere.
This patch uses Thread::State::Foo everywhere instead of Thread::Foo
or just Foo.
If the blocker is interrupted by a signal, that signal will be delivered
to the process when returning to userspace (at the syscall exit point.)
We don't have to perform the dispatch manually in Thread::block_impl().
Signal dispatch is already taken care of elsewhere, so there appears to
be no need for the hack in enter_current().
This also allows us to remove the Thread::m_in_block flag, simplifying
thread blocking logic somewhat.
Verified with the original repro for #4336 which this was meant to fix.
This function is large and unwieldy and forces Thread.h to #include
a bunch of things. The only reason it was in the header is because we
need to instantiate a blocker based on the templated BlockerType.
We actually keep block<BlockerType>() in the header, but move the
bulk of the function body out of line into Thread::block_impl().
To preserve destructor ordering, we add Blocker::finalize() which is
called where we'd previously destroy the Blocker.
We currently support the left super key. This poses an issue on
keyboards that only have a right super key, such as my Steelseries 6G.
The implementation mirrors the left/right shift key logic and
effectively considers the right super key identical to the left one.