Apple Clang 14.0.3 (Xcode 14.3) miscompiles this builtin on AArch64,
causing the borrow flag to be set incorrectly. I have added a detailed
writeup on Qemu's issue tracker, where the same issue led to a hang when
emulating x86:
https://gitlab.com/qemu-project/qemu/-/issues/1659#note_1408275831
I don't know of any specific issue caused by this on Lagom, but better
safe than sorry.
GCC 14 (https://gcc.gnu.org/g:2b4e0415ad664cdb3ce87d1f7eee5ca26911a05b)
has added support for the previously Clang-specific add/subtract with
borrow builtins. Let's use `__has_builtin` to detect them instead of
assuming that only Clang has them. We should prefer these to the
x86-specific ones as architecture-independent middle-end optimizations
might deal with them better.
As an added bonus, this significantly improves codegen on AArch64
compared to the fallback implementation that uses
`__builtin_{add,sub}_overflow`.
For now, the code path with the x86-specific intrinsics stays so as to
avoid regressing the performance of builds with GCC 12 and 13.
The previous version had a sequence of calls that are likely not
optimized out, while this version is strictly a sequence of static type
conversion which are always fully optimized out.
The previous alignment would always resolve to 8-bytes, which is below
the required alignments of types that could exist in userspace (long
double, 128-bit integers, SSE, etc).
The FileSlash state was erroneously copying the base URL host, instead
of the base URL path excluding the last path component. This resulted in
invalid file URLs.
Calling `from_utf8` with a DeprecatedString will hide the fact that we
have a DeprecatedString, while using `from_deprecated_string` with a
StringView will silently and needlessly allocate a DeprecatedString,
so let's forbid that.
This does a few things:
- The decoder uses a 32- or 64-bit integer as a reservoir of the data
being decoded, rather than one single byte as it was previously.
- `read_bool()` only refills the reservoir (value) when the size drops
below one byte. Previously, it would read out a bit-sized range from
the data to completely refill the 8-bit value, doing much more work
than necessary for each individual read.
- VP9-specific code for reading the marker bit was moved to its own
function in Context.h.
- A debug flag `VPX_DEBUG` was added to optionally enable checking of
the final bits in a VPX ranged arithmetic decode and ensure that it
contains all zeroes. These zeroes are a bitstream requirement for
VP9, and are also present for all our lossy WebP test inputs
currently. This can be useful to test whether all the data present in
the range has been consumed.
A lot of the size of this diff comes from the removal of error handling
from all the range decoder reads in LibVideo/VP9 and LibGfx/WebP (VP8),
since it is now checked only at the end of the range.
In a benchmark decoding `Tests/LibGfx/test-inputs/4.webp`, decode times
are improved by about 22.8%, reducing average runtime from 35.5ms±1.1ms
down to 27.4±1.1ms.
This should cause no behavioral changes.
Change the name and return type of
`IPv6Address::to_deprecated_string()` to `IPv6Address::to_string()`
with return type `ErrorOr<String>`.
It will now propagate errors that occur when writing to the
StringBuilder.
There are two users of `to_deprecated_string()` that now use
`to_string()`:
1. `Formatted<IPv6Address>`: it now propagates errors.
2. `inet_ntop`: it now sets errno to ENOMEM and returns.
This has KString, KBuffer, DoubleBuffer, KBufferBuilder, IOWindow,
UserOrKernelBuffer and ScopedCritical classes being moved to the
Kernel/Library subdirectory.
Also, move the panic and assertions handling code to that directory.
This partially implements CSS-Animations-1 (though there are references
to CSS-Animations-2).
Current limitations:
- Multi-selector keyframes are not supported.
- Most animation properties are ignored.
- Timing functions are not applied.
- Non-absolute values are not interpolated unless the target is also of
the same non-absolute type (e.g. 10% -> 25%, but not 10% -> 20px).
- The JavaScript interface is left as an exercise for the next poor soul
looking at this code.
With those said, this commit implements:
- Interpolation for most common types
- Proper keyframe resolution (including the synthetic from-keyframe
containing the initial state)
- Properly driven animations, and proper style invalidation
Co-Authored-By: Andreas Kling <kling@serenityos.org>
This class takes on the duties of CLOCK_MONOTONIC, a time without a
defined reference point that always increases. This informs some
important design decisions about the class API: MonotonicTime cannot be
constructed from external time data, except as a computation based on
other monotonic time, or the current monotonic time. Importantly, there
is no default constructor, since the reference point of monotonic time
is unspecified and therefore without meaning as a default.
The current use of monotonic time (via Duration) includes some potential
problems that may be caught when we move most to all code to
MonotonicTime in the next commit.
The API restrictions have one important relaxation:
Kernel::TimeManagement is allowed to exchange raw time data within
MonotonicTime freely. This is required for the clock-agnostic time
accessors for timeouts and syscalls, as well as creating monotonic time
data from hardware in the first place.
"Wherever applicable" = most places, actually :^), especially for
networking and filesystem timestamps.
This includes changes to unzip, which uses DOSPackedTime, since that is
changed for the FAT file systems.
This is a generic wrapper for a time instant relative to the unix epoch,
and does not account for leap seconds. It should be used in place of
Duration in most current cases.
This is a trivial change, and since this batch of commits will make a
large-scale rebuild necessary anyways, it seems sensible. The feature is
useful for e.g. building compound constant durations at compile time in
a readable way.
That's what this class really is; in fact that's what the first line of
the comment says it is.
This commit does not rename the main files, since those will contain
other time-related classes in a little bit.
This attribute is used for functions in the kernel that are entirely
written in assembly, yet defined in C++ source files.
Without `__attribute__((naked))`, Clang might decide to inline these
functions, making any `ret` instructions within them actually exit the
caller, or discard argument values as they appear "dead". This issue
caused a kernel panic when using the `execve` syscall in AArch64
SerenityOS built by Clang.
While the empty definition so far appears to work fine with GCC, simpler
test cases do similarly suffer from unintended inlining, so define
`NAKED` as a synonym of `NEVER_INLINE` to avert future issues.
Perhaps we should move users of `NAKED` to plain assembly files?
This makes aarch64Clang builds boot :^)
This underlines that we still copy-construct and copy-assign HashMaps.
Primarily, this makes it easier to develop towards OOM-safe(r) internal
data structures, by providing a reminder (the FIXME) and an easy error-
checking switch (just change it to "delete" to see some of the errors).