We now use AK::Error and AK::ErrorOr<T> in both kernel and userspace!
This was a slightly tedious refactoring that took a long time, so it's
not unlikely that some bugs crept in.
Nevertheless, it does pass basic functionality testing, and it's just
real nice to finally see the same pattern in all contexts. :^)
The implementation uses try_copy_kstring_from_user to allocate a kernel
string using, but does not use the length of the resulting string.
The size parameter to the syscall is untrusted, as try copy kstring will
attempt to perform a `safe_strlen(..)` on the user mode string and use
that value for the allocated length of the KString instead. The bug is
that we are printing the kstring, but with the usermode size argument.
During fuzzing this resulted in us walking off the end of the allocated
KString buffer printing garbage (or any kernel data!), until we stumbled
in to the KSym region and hit a fatal page fault.
This is technically a kernel information disclosure, but (un)fortunately
the disclosure only happens to the Bochs debug port, and or the serial
port if serial debugging is enabled. As far as I can tell it's not
actually possible for an untrusted attacker to use this to do something
nefarious, as they would need access to the host. If they have host
access then they can already do much worse things :^).
Before we start disabling acquisition of the big process lock for
specific syscalls, make sure to document and assert that all the
lock is held during all syscalls.
The Process::Handler type has KResultOr<FlatPtr> as its return type.
Using a different return type with an equally-sized template parameter
sort of works but breaks once that condition is no longer true, e.g.
for KResultOr<int> on x86_64.
Ideally the syscall handlers would also take FlatPtrs as their args
so we can get rid of the reinterpret_cast for the function pointer
but I didn't quite feel like cleaning that up as well.
This rewrites the dbgputch and dbgputstr system calls as wrappers of
kstdio.h.
This fixes a bug where only the Kernel's debug output was also sent to
a serial debugger, while the userspace's debug output was only sent to
the Bochs debugger.
This also fixes a bug where debug output from one process would
sometimes "interrupt" the debug output from another process in the
middle of a line.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
We forgot to remove the automatic SMAP disablers after fixing up all
this code to not access userspace memory directly. Let's lock things
down at last. :^)
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
This is something I've been meaning to do for a long time, and here we
finally go. This patch moves all sys$foo functions out of Process.cpp
and into files in Kernel/Syscalls/.
It's not exactly one syscall per file (although it could be, but I got
a bit tired of the repetitive work here..)
This makes hacking on individual syscalls a lot less painful since you
don't have to rebuild nearly as much code every time. I'm also hopeful
that this makes it easier to understand individual syscalls. :^)