The class is virtual and has one subclass, SubsampledYUVFrame, which
is used by the VP9 decoder to return a single frame. The
output_to_bitmap(Bitmap&) function can be used to set pixels on an
existing bitmap of the correct size to the RGB values that
should be displayed. The to_bitmap() function will allocate a new bitmap
and fill it using output_to_bitmap.
This new class also implements bilinear scaling of the subsampled U and
V planes so that subsampled videos' colors will appear smoother.
Because we still support u64 and i64 (on top of i32 and u32) we do still
have to parse the number ourself first. Then if we determine that the
number is a floating point or is outside of the range of i64 and u64 we
fallback and parse it as a double.
Before JsonParser had ifdefs guarding the double computation, but it
just build when we error on ifdef KERNEL so JsonParser is no longer
usable in the Kernel. This can be remedied fairly easily but since
it is not needed we #error on that for now.
Similar to decimal floating point parsing the current strtod hex float
parsing gives a lot of incorrect results. We can use a similar technique
as with decimal parsing however hex floats are much simpler as we don't
need to scale with a power of 5.
For hex floats we just provide the parse_first_hexfloat API as there is
currently no need for a parse_hexfloat_completely API.
Again the accepted input for parse_first_hexfloat is very lenient and
any validation should be done before calling this method.
This is based on the paper by Daniel Lemire called
"Number parsing at a Gigabyte per second", currently available at
https://arxiv.org/abs/2101.11408
An implementation can be found at
https://github.com/fastfloat/fast_float
To support both strtod like methods and String::to_double we have two
different APIs. The parse_first_floating_point gives back both the
result, next character to read and the error/out of range status.
Out of range here means we rounded to infinity 0.
The other API, parse_floating_point_completely, will return a floating
point only if the given character range contains just the floating point
and nothing else. This can be much faster as we can skip actually
computing the value if we notice we did not parse the whole range.
Both of these APIs support a very lenient format to be usable in as many
places as possible. Also it does not check for "named" values like
"nan", "inf", "NAN" etc. Because this can be different for every usage.
For integers and small values this new method is not faster and often
even a tiny bit slower than the current strtod implementation. However
the strtod implementation is wrong for a lot of values and has a much
less predictable running time.
For correctness this method was tested against known string -> double
datasets from https://github.com/nigeltao/parse-number-fxx-test-data
This method gives 100% accuracy.
The old strtod gave an incorrect value in over 50% of the numbers
tested.
By appending individual bytes as code points, we were "breaking apart"
multi-byte UTF-8 code points. This now behaves the same way as the
invert_case() helper in StringUtils.
Commit c3fd455 changed LibTimeZone to fall back to the system time zone
when we fail to parse the TZ environment variable. This behavior differs
from both our LibC and glibc; they abort parsing and default to UTC.
This changes LibTimeZone to behave the same way to avoid a very awkward
situation where some parts of the codebase thinks the timezone is UTC,
and others think the timezone is whatever /etc/timezone indicates.
According to the spec, pointers to client data need to be dereferenced
immediately when adding calls such as `glDrawElements` or
`glArrayElement` to a display list. We were trying to support display
lists for these calls but since they only invoke _other_ calls that also
support display lists, we can simply defer the display list
functionality to them.
This fixes the rendering of the ClassiCube port by cflip.
Instead of just having a giant KBuffer that is not resizeable easily, we
use multiple AnonymousVMObjects in one Vector to store them.
The idea is to not have to do giant memcpy or memset each time we need
to allocate or de-allocate memory for TmpFS inodes, but instead, we can
allocate only the desired block range when trying to write to it.
Therefore, it is also possible to have data holes in the inode content
in case of skipping an entire set of one data block or more when writing
to the inode content, thus, making memory usage much more efficient.
To ensure we don't run out of virtual memory range, don't allocate a
Region in advance to each TmpFSInode, but instead try to allocate a
Region on IO operation, and then use that Region to map the VMObjects
in IO loop.
Currently, the Value class is essentially a "pImpl" wrapper around the
ValueImpl hierarchy of classes. This is a bit difficult to follow and
reason about, as methods jump between the Value class and its impl
classes.
This changes the Variant held by Value to instead store the specified
types (String, int, etc.) directly. In doing so, the ValueImpl classes
are removed, and all methods are now just concise Variant visitors.
As part of this rewrite, support for the "array" type is dropped (or
rather, just not re-implemented) as it was unused. If it's needed in the
future, support can be re-added.
This does retain the ability for non-NULL types to store NULL values
(i.e. an empty Optional). I tried dropping this support as well, but it
is depended upon by the on-disk storage classes in non-trivial ways.
Even though this almost certainly wouldn't run properly even if we had
a working kernel for AARCH64 this at least lets us build all the
userland binaries.
The only complication here is that Core::Stream::File is not RefCounted
meaning we have to use OwnPtr instead of RefPtr.
Unfortunately we cannot propagate errors as some errors must be caught
and dealt with as the runner can do anything (like stop at any moment
or close pipes).
Without this the runner is waiting for new tests which will never come
and test-test262 is waiting for output which never comes since the
runner is blocked.
Also finish off a comment, and make the variables follow serenity style.
Previously, some integer overflows and truncations were causing parsing
errors for 4K videos, with those fixed it can fully decode 8K video.
This adds a test to ensure that 4K video will continue to be decoded.
Note: There seems to be unexpectedly high memory usage while decoding
them, causing 8K video to require more than a gigabyte of RAM. (!!!)
The relevant RFC section from
https://www.rfc-editor.org/rfc/rfc7932#section-9.2
MSKIPBYTES * 8 bits: MSKIPLEN - 1, where MSKIPLEN is
the number of metadata bytes; this field is
only present if MSKIPBYTES is positive;
otherwise, MSKIPLEN is 0 (if MSKIPBYTES is
greater than 1, and the last byte is all
zeros, then the stream should be rejected as
invalid)
So when skip_bytes is zero we need to break and
re-align bytes.
Added the relevant test case that demonstrates this from:
https://github.com/google/brotli/blob/master/tests/testdata/x.compressed
If the entire string you want to right-trim consists of characters you
want to remove, we previously would incorrectly leave the first
character there.
For example: `trim("aaaaa", "a")` would return "a" instead of "".
We can't use `i >= 0` in the loop since that would fail to detect
underflow, so instead we keep `i` in the range `size .. 1` and then
subtract 1 from it when reading the character.
Added some trim() tests while I was at it. (And to confirm that this was
the issue.)
This test file had #ifdef macros at the top that caused none of the
content to be compiled unless a developer manually wanted to run the
specific benchmarks within. As such, it has become stale. Remove it for
now, if someone wants to restore it in an always-runnable state, we can
restore the specific tests it's trying to benchmark.
Instead of doing anything reasonable, Utf8CodePointIterator returned
invalid code points, for example U+123456. However, many callers of this
iterator assume that a code point is always at most 0x10FFFF.
In fact, this is one of two reasons for the following OSS Fuzz issue:
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=49184
This is probably a very old bug.
In the particular case of URLParser, AK::is_url_code_point got confused:
return /* ... */ || code_point >= 0xA0;
If code_point is a "code point" beyond 0x10FFFF, this violates the
condition given in the preceding comment, but satisfies the given
condition, which eventually causes URLParser to crash.
This commit fixes *only* the erroneous UTF-8 decoding, and does not
fully resolve OSS-Fuzz#49184.
This fixes `combine_hangul_code_points` which would try to combine
a LVT syllable with a trailing consonant, resulting in a wrong
character.
Also added a test for this specific case.
`mkstemps` generates a unique temporary file name from a pattern like
`prefixXXXXXXsuffix` where `prefix` and `suffix` can be any string with
only characters that are valid in a filename. The second parameter is
the length of the suffix.
`mkstemp` is `mkstemps` with suffix length 0, so to avoid code
duplication it calls `mkstemps`. It is unlikely this has any
significant performance impact on SerenityOS.
`generate_unique_filename` now takes the suffix length as a `size_t`.
The original behavior of this function is preserved when specifying a
suffix length of 0. All original uses of this function have been
adapted.
`mkstemps()` was added because it is required by version 4.6.3 of the
ccache port.
Doesn't use them in libc headers so that those don't have to pull in
AK/Platform.h.
AK_COMPILER_GCC is set _only_ for gcc, not for clang too. (__GNUC__ is
defined in clang builds as well.) Using AK_COMPILER_GCC simplifies
things some.
AK_COMPILER_CLANG isn't as much of a win, other than that it's
consistent with AK_COMPILER_GCC.
Some time zones, like "Asia/Shanghai", use a set of DST rules that end
before present day. In these cases, we should fall back to last possible
RULE entry from the TZDB. The time zone compiler published by IANA (zic)
performs the same fallback starting with version 2 of the time zone file
format.
JS::Value stores 48 bit pointers to separately allocated objects in its
payload. On x86-64, canonical addresses have their top 16 bits set to
the same value as bit 47, effectively meaning that the value has to be
sign-extended to get the pointer. AArch64, however, expects the topmost
bits to be all zeros.
This commit gates sign extension behind `#if ARCH(X86_64)`, and adds an
`#error` for unsupported architectures, so that we do not forget to
think about pointer handling when porting to a new architecture.
Fixes#15290FixesSerenityOS/ladybird#56
We were dropping the base URL path components in the resulting URL due
to mistakenly determining the input URL to start with a Windows drive
letter. Fix this, add a spec link, and a test.
The test-case is heavily inspired by:
https://github.com/google/brotli/blob/master/tests/testdata/x.compressed.01
Or in words: A metadata meta-block containing `Y` (which should be
ignored), and then the actual data (a single `Z`). The bug used to skip
one metadata byte too few, and thus read garbage.
Propagate errors in places that are already set up to handle them, like
WebGLRenderingContext and the Tubes demo, and convert other callers
to using MUST.
This caused the m_allocation_enabled_previously member to be technically
uninitialized when the compiler emits the implicit destructor call for
stack allocated classes.
This was pointed out by gcc on lagom builds, no clue how this was flying
under the radar for so long and is not triggering CI.