This patch teaches UpdateExpression how to use a Reference. Some other
changes were necessary to keep tests working:
A Reference can now also refer to a local or global variable. This is
not fully aligned with the spec since we don't have a Record concept.
JS::Value already has the empty state ({} or Value() gives you one.)
Use this instead of wrapping Value in Optional in some places.
I've also added Value::value_or(Value) so you can easily provide a
fallback value when one is not present.
A MarkedValueList is basically a Vector<JS::Value> that registers with
the Heap and makes sure that the stored values don't get GC'd.
Before this change, we were unsafely keeping Vector<JS::Value> in some
places, which is out-of-reach for the live reference finding logic
since Vector puts its elements on the heap by default.
We now pass all the JavaScript tests even when running with "js -g",
which does a GC on every heap allocation.
This patch replaces the old variable lookup logic with a new one based
on lexical environments.
This brings us closer to the way JavaScript is actually specced, and
also gives us some basic support for closures.
The interpreter's call stack frames now have a pointer to the lexical
environment for that frame. Each lexical environment can have a chain
of parent environments.
Before calling a Function, we first ask it to create_environment().
This gives us a new LexicalEnvironment for that function, which has the
function's lexical parent's environment as its parent. This allows
inner functions to access variables in their outer function:
function foo() { <-- LexicalEnvironment A
var x = 1;
function() { <-- LexicalEnvironment B (parent: A)
console.log(x);
}
}
If we return the result of a function expression from a function, that
new function object will keep a reference to its parent environment,
which is how we get closures. :^)
I'm pretty sure I didn't get everything right here, but it's a pretty
good start. This is quite a bit slower than before, but also correcter!
Since declarations are now hoisted and handled on scope entry, the job
of a VariableDeclaration becomes to actually initialize variables.
As such, we can remove the part where we insert variables into the
nearest relevant scope. Less work == more speed! :^)
"var" declarations are hoisted to the nearest function scope, while
"let" and "const" are hoisted to the nearest block scope.
This is done by the parser, which keeps two scope stacks, one stack
for the current var scope and one for the current let/const scope.
When the interpreter enters a scope, we walk all of the declarations
and insert them into the variable environment.
We don't support the temporal dead zone for let/const yet.
We were hitting strcmp() in every variable lookup to see if the lookup
was for "this". Caching a FlyString("this") turns that check into one
pointer comparison instead. :^)
This patch adds instance, constructor and prototype classes for:
- EvalError
- InternalError
- RangeError
- ReferenceError
- SyntaxError
- TypeError
- URIError
Enumerator macros are used to reduce the amount of typing. :^)
Many other parsers call it with this name.
Also Type can be confusing in this context since the DeclarationType is
not the type (number, string, etc.) of the variables that are being
declared by the VariableDeclaration.
This patch adds a new kind of JS::Value, the empty value.
It's what you get when you do JSValue() (or most commonly, {} in C++.)
An empty Value signifies the absence of a value, and should never be
visible to JavaScript itself. As of right now, it's used for array
holes and as a return value when an exception has been thrown and we
just want to unwind.
This patch is a bit of a mess as I had to fix a whole bunch of code
that was relying on JSValue() being undefined, etc.
Only return whatever a "return" statment told us to return.
The last computed value is now available in Interpreter::last_value()
instead, where the REPL can pick it up.
This patch adds JS::Shape, which implements a transition tree for our
Object class. Object property keys, prototypes and attributes are now
stored in a Shape, and each Object has a Shape.
When adding a property to an Object, we make a transition from the old
Shape to a new Shape. If we've made the same exact transition in the
past (with another Object), we reuse the same transition and both
objects may now share a Shape.
This will become the foundation of inline caching and other engine
optimizations in the future. :^)
LibWeb now creates a WindowObject which inherits from GlobalObject.
Allocation of the global object is moved out of the Interpreter ctor
to allow for specialized construction.
The existing Window interfaces are moved to WindowObject with their
implementation code in the new Window class.
This adds:
- A global Date object (with `length` property and `now` function)
- The Date constructor (no arguments yet)
- The Date prototype (with `get*` functions)
Native functions now only get the Interpreter& as an argument. They can
then extract |this| along with any indexed arguments it wants from it.
This forces functions that want |this| to actually deal with calling
interpreter.this_value().to_object(), and dealing with the possibility
of a non-object |this|.
This is still not great but let's keep massaging it forward.
We were interpreting "undefined" as a variable lookup failure in some
cases and throwing a ReferenceError exception instead of treating it
as the valid value "undefined".
This patch wraps the result of variable lookup in Optional<>, which
allows us to only throw ReferenceError when lookup actually fails.
You can now throw an expression to the nearest catcher! :^)
To support throwing arbitrary values, I added an Exception class that
sits as a wrapper around whatever is thrown. In the future it will be
a logical place to store a call stack.
You can now throw exceptions by calling Interpreter::throw_exception().
Anyone who calls ASTNode::execute() needs to check afterwards if the
Interpreter now has an exception(), and if so, stop what they're doing
and simply return.
When catching an exception, we'll first execute the CatchClause node
if present. After that, we'll execute the finalizer block if present.
This is unlikely to be completely correct, but it's a start! :^)
We can now handle scripts with if/else in LibJS. Most of the changes
are about fixing IfStatement to store the consequent and alternate node
as Statements.
Interpreter now also runs Statements, rather than running ScopeNodes.
This function is ultimately supposed to be generic and allow any |this|
that has a length property, but for now it only works on our own Array
object type.