This fixes a bug where unveiling a subdirectory of an already unveiled
path would sometimes be allowed and sometimes not (depending on what
other unveil calls have been made).
Now, it is always allowed to unveil a subdirectory of an already
unveiled directory, even if it has higher permissions.
This removes the need for the permissions_inherited_from_root flag in
UnveilMetadata, so it has been removed.
This adds two new arguments to the thread_exit system call which let
a thread unmap an arbitrary VM range on thread exit. LibPthread
uses this functionality to unmap the thread stack.
Fixes#7267.
With -Og, all calls to create_kernel_process were triggering -Wnonnull
when creating these lambdas that get implicitly converted to function
pointers. A different design of create_kernel_process to use
AK::Function instead might avoid this awkward behavior.
Previously the process' m_profiling flag was ignored for all event
types other than CPU samples.
The kfree tracing code relies on temporarily disabling tracing during
exec. This didn't work for per-process profiles and would instead
panic.
This updates the profiling code so that the m_profiling flag isn't
ignored.
Problem:
- `static` variables consume memory and sometimes are less
optimizable.
- `static const` variables can be `constexpr`, usually.
- `static` function-local variables require an initialization check
every time the function is run.
Solution:
- If a global `static` variable is only used in a single function then
move it into the function and make it non-`static` and `constexpr`.
- Make all global `static` variables `constexpr` instead of `const`.
- Change function-local `static const[expr]` variables to be just
`constexpr`.
Unlike accept() the new accept4() system call lets the caller specify
flags for the newly accepted socket file descriptor, such as
SOCK_CLOEXEC and SOCK_NONBLOCK.
By constraining two implementations, the compiler will select the best
fitting one. All this will require is duplicating the implementation and
simplifying for the `void` case.
This constraining also informs both the caller and compiler by passing
the callback parameter types as part of the constraint
(e.g.: `IterationFunction<int>`).
Some `for_each` functions in LibELF only take functions which return
`void`. This is a minimal correctness check, as it removes one way for a
function to incompletely do something.
There seems to be a possible idiom where inside a lambda, a `return;` is
the same as `continue;` in a for-loop.
This change looks more involved than it actually is. This simply
reshuffles the previous Process constructor and splits out the
parts which can fail (resource allocation) into separate methods
which can be called from a factory method. The factory is then
used everywhere instead of the constructor.
Modify the API so it's possible to propagate error on OOM failure.
NonnullOwnPtr<T> is not appropriate for the ThreadTracer::create() API,
so switch to OwnPtr<T>, use adopt_own_if_nonnull() to handle creation.
This patch modifies InodeWatcher to switch to a one watcher, multiple
watches architecture. The following changes have been made:
- The watch_file syscall is removed, and in its place the
create_iwatcher, iwatcher_add_watch and iwatcher_remove_watch calls
have been added.
- InodeWatcher now holds multiple WatchDescriptions for each file that
is being watched.
- The InodeWatcher file descriptor can be read from to receive events on
all watched files.
Co-authored-by: Gunnar Beutner <gunnar@beutner.name>
The current method of emitting performance events requires a bit of
boiler plate at every invocation, as well as having to ignore the
return code which isn't used outside of the perf event syscall. This
change attempts to clean that up by exposing high level API's that
can be used around the code base.
Previously, TLS data was always zero-initialized.
To support initializing the values of TLS data, sys$allocate_tls now
receives a buffer with the desired initial data, and copies it to the
master TLS region of the process.
The DynamicLinker gathers the initial TLS image and passes it to
sys$allocate_tls.
We also now require the size passed to sys$allocate_tls to be
page-aligned, to make things easier. Note that this doesn't waste memory
as the TLS data has to be allocated in separate pages anyway.
This turns the perfcore format into more a log than it was before,
which lets us properly log process, thread and region
creation/destruction. This also makes it unnecessary to dump the
process' regions every time it is scheduled like we did before.
Incidentally this also fixes 'profile -c' because we previously ended
up incorrectly dumping the parent's region map into the profile data.
Log-based mmap support enables profiling shared libraries which
are loaded at runtime, e.g. via dlopen().
This enables profiling both the parent and child process for
programs which use execve(). Previously we'd discard the profiling
data for the old process.
The Profiler tool has been updated to not treat thread IDs as
process IDs anymore. This enables support for processes with more
than one thread. Also, there's a new widget to filter which
process should be displayed.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
While profiling all processes the profile buffer lives forever.
Once you have copied the profile to disk, there's no need to keep it
in memory. This syscall surfaces the ability to clear that buffer.
This should allow creating intrusive lists that have smart pointers,
while remaining free (compared to the impl before this commit) when
holding raw pointers :^)
As a sidenote, this also adds a `RawPtr<T>` type, which is just
equivalent to `T*`.
Note that this does not actually use such functionality, but is only
expected to pave the way for #6369, to replace NonnullRefPtrVector<T>
with intrusive lists.
As it is with zero-cost things, this makes the interface a bit less nice
by requiring the type name of what an `IntrusiveListNode` holds (and
optionally its container, if not RawPtr), and also requiring the type of
the container (normally `RawPtr`) on the `IntrusiveList` instance.
The previous architecture had a huge flaw: the pointer to the protected
data was itself unprotected, allowing you to overwrite it at any time.
This patch reorganizes the protected data so it's part of the Process
class itself. (Actually, it's a new ProcessBase helper class.)
We use the first 4 KB of Process objects themselves as the new storage
location for protected data. Then we make Process objects page-aligned
using MAKE_ALIGNED_ALLOCATED.
This allows us to easily turn on/off write-protection for everything in
the ProcessBase portion of Process. :^)
Thanks to @bugaevc for pointing out the flaw! This is still not perfect
but it's an improvement.
Process member variable like m_euid are very valuable targets for
kernel exploits and until now they have been writable at all times.
This patch moves m_euid along with a whole bunch of other members
into a new Process::ProtectedData struct. This struct is remapped
as read-only memory whenever we don't need to write to it.
This means that a kernel write primitive is no longer enough to
overwrite a process's effective UID, you must first unprotect the
protected data where the UID is stored. :^)
This returns ENOSYS if you are running in the real kernel, and some
other result if you are running in UserspaceEmulator.
There are other ways we could check if we're inside an emulator, but
it seemed easier to just ask. :^)
If we can't allocate a PerformanceEventBuffer to store the profiling
events, we now fail sys$profiling_enable() and sys$perf_event()
with ENOMEM instead of carrying on with a broken buffer.
I don't dare touch the multi-threading logic and locking mechanism, so it stays
timespec for now. However, this could and should be changed to AK::Time, and I
bet it will simplify the "increment_time_since_boot()" code.