When a process crashes, we generate a coredump file and write it in
/tmp/coredumps/.
The coredump file is an ELF file of type ET_CORE.
It contains a segment for every userspace memory region of the process,
and an additional PT_NOTE segment that contains the registers state for
each thread, and a additional data about memory regions
(e.g their name).
This adds an allocate_tls syscall through which a userspace process
can request the allocation of a TLS region with a given size.
This will be used by the dynamic loader to allocate TLS for the main
executable & its libraries.
When the main executable needs an interpreter, we load the requested
interpreter program, and pass to it an open file decsriptor to the main
executable via the auxiliary vector.
Note that we do not allocate a TLS region for the interpreter.
This prevents zombies created by multi-threaded applications and brings
our model back to closer to what other OSs do.
This also means that SIGSTOP needs to halt all threads, and SIGCONT needs
to resume those threads.
This is necessary because if a process changes the state to Stopped
or resumes from that state, a wait entry is created in the parent
process. So, if a child process does this before disown is called,
we need to clear those entries to avoid leaking references/zombies
that won't be cleaned up until the former parent exits.
This also should solve an even more unlikely corner case where another
thread is waiting on a pid that is being disowned by another thread.
This makes the Scheduler a lot leaner by not having to evaluate
block conditions every time it is invoked. Instead evaluate them as
the states change, and unblock threads at that point.
This also implements some more waitid/waitpid/wait features and
behavior. For example, WUNTRACED and WNOWAIT are now supported. And
wait will now not return EINTR when SIGCHLD is delivered at the
same time.
This adds the ability to pass a pointer to kernel thread/process.
Also add the ability to use a closure as thread function, which
allows passing information to a kernel thread more easily.
This is a new "browse" permission that lets you open (and subsequently list
contents of) directories underneath the path, but not regular files or any other
types of files.
Most systems (Linux, OpenBSD) adjust 0.5 ms per second, or 0.5 us per
1 ms tick. That is, the clock is sped up or slowed down by at most
0.05%. This means adjusting the clock by 1 s takes 2000 s, and the
clock an be adjusted by at most 1.8 s per hour.
FreeBSD adjusts 5 ms per second if the remaining time adjustment is
>= 1 s (0.5%) , else it adjusts by 0.5 ms as well. This allows adjusting
by (almost) 18 s per hour.
Since Serenity OS can lose more than 22 s per hour (#3429), this
picks an adjustment rate up to 1% for now. This allows us to
adjust up to 36s per hour, which should be sufficient to adjust
the clock fast enough to keep up with how much time the clock
currently loses. Once we have a fancier NTP implementation that can
adjust tick rate in addition to offset, we can think about reducing
this.
adjtime is a bit old-school and most current POSIX-y OSs instead
implement adjtimex/ntp_adjtime, but a) we have to start somewhere
b) ntp_adjtime() is a fairly gnarly API. OpenBSD's adjfreq looks
like it might provide similar functionality with a nicer API. But
before worrying about all this, it's probably a good idea to get
to a place where the kernel APIs are (barely) good enough so that
we can write an ntp service, and once we have that we should write
a way to automatically evaluate how well it keeps the time adjusted,
and only then should we add improvements ot the adjustment mechanism.
Similar to Process, we need to make Thread refcounted. This will solve
problems that will appear once we schedule threads on more than one
processor. This allows us to hold onto threads without necessarily
holding the scheduler lock for the entire duration.
The implementation only supports a single iovec for now.
Some might say having more than one iovec is the main point of
recvmsg() and sendmsg(), but I'm interested in the control message
bits.
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
Since "rings" typically refer to code execution and user processes
can also execute in ring 0, rename these functions to more accurately
describe what they mean: kernel processes and user processes.
This does not add any behaviour change to the processes, but it ties a
TTY to an active process group via TIOCSPGRP, and returns the TTY to the
kernel when all processes in the process group die.
Also makes the TTY keep a link to the original controlling process' parent (for
SIGCHLD) instead of the process itself.
This fixes a bunch of unchecked kernel reads and writes, seems like they
would might exploitable :). Write of sockaddr_in size to any address you
please...
Note that the data member is of type ImmutableBufferArgument, which has
no Userspace<T> usage. I left it alone for now, to be fixed in a future
change holistically for all usages.
This is racy in userspace and non-racy in kernelspace so let's keep
it in kernelspace.
The behavior change where CLOEXEC is preserved when dup2() is called
with (old_fd == new_fd) was good though, let's keep that.
Userspace<void*> is a bit strange here, as it would appear to the
user that we intend to de-refrence the pointer in kernel mode.
However I think it does a good join of illustrating that we are
treating the void* as a value type, instead of a pointer type.