We currently do this already when the last tab is closed via the ctrl-W
shortcut. Move the logic for this to BrowserWindow::close_tab so that we
also close the window when the tab is closed via its close button.
By default, Qt will grow the width of a tab button to fit the title text
of the tab. For long titles or file:// URLs, this looks rather bad. This
sets a min/max tab width to prevent such infinite growth.
To do this, we have to subclass both QTabWidget and QTabBar, because the
functions to be called/overridden are protected.
If the left-hand side of the tab is already occupied with an audio state
button, we would add a second button to the right-hand side. Prevent
that by checking if the occupant is our audio state button.
On Serenity, it's not trivial to extract the peer pid from a socket that
is created by SystemServer and then passed to a forked service process.
This patch adds an API to let the WebContent process notify the UI
directly, which makes the WebContent process show up in the Serenity
port's TaskManagerWidget. It seems that we will need to do something of
this sort in order to properly gather metrics on macOS as well, due to
the way that self mach ports work.
This implementation uses a really basic WebView to update stats once
a second. In the future it might make more sense to both move the
details into LibWebView, and to create a native widget for each platform
to remove the overhead of having an extra WebView.
On macOS, the "close tab" button is on the left, so we should place the
audio state button on the right to avoid conflict. Rather than an OS
ifdef, we do this by detecting if the left side is occupied.
We were errantly always referring to the active tab when the audio play
state changed, and when clicking a tab's audio state button, by way of
BrowserWindow::view().
It turns out we also can't copy / rely on the tab index provided to the
signal in any asynchronous context. If the tabs are rearranged, so are
their indices. Instead, capture a pointer to the tab of interest - this
should be safe as we wouldn't be able to click a tab's audio button if
that tab no longer exists.
With this change, we can click the audio button from any tab in the Qt
chrome, and re-arrange tabs at will. The AppKit and Serenity chromes do
not have this issue.
We already display a speaker icon on tabs which are playing audio. This
allows the user to click that icon to mute the tab, at which point the
icon is replaced with a muted speaker icon.
We would previously hide the icon when audio stopped playing. We now do
this only if the tab isn't muted. If it is muted, the muted speaker icon
remains on the tab so that the page isn't stuck in a muted state.
We already display a speaker icon on tabs which are playing audio. This
allows the user to click that icon to mute the tab, at which point the
icon is replaced with a muted speaker icon.
We would previously hide the icon when audio stopped playing. We now do
this only if the tab isn't muted. If it is muted, the muted speaker icon
remains on the tab so that the page isn't stuck in a muted state.
When audio begins playing, add a button as an accessory view with a
speaker icon to indicate which tab is playing audio. This button is
currently disabled, but in the future may be used to mute the tab.
When audio begins playing, add a button to the left of the favicon with
a speaker icon to indicate which tab is playing audio. This button is
currently disabled, but in the future may be used to mute the tab.
This ensures we consistently show a favicon and that we update the title
to at least display the page URL when there isn't a <title> tag. We
would otherwise continue displaying the previous page's title.
The path we were using is no longer correct, and we've been silently
dropping this error. Use Core::Resource instead, which we use for most
other Ladybird resources. This would have made it much more obvious that
emoji were not installed with the application.
This URL library ends up being a relatively fundamental base library of
the system, as LibCore depends on LibURL.
This change has two main benefits:
* Moving AK back more towards being an agnostic library that can
be used between the kernel and userspace. URL has never really fit
that description - and is not used in the kernel.
* URL _should_ depend on LibUnicode, as it needs punnycode support.
However, it's not really possible to do this inside of AK as it can't
depend on any external library. This change brings us a little closer
to being able to do that, but unfortunately we aren't there quite
yet, as the code generators depend on LibCore.
These are standalone applications meant to be run by the user directly,
as opposed to other libexec processes which are programmatically forked
by the browser. To do this, we simply remove these processes from the
`ladybird_helper_processes` list. We must also explicitly list the
dependencies for these processes.
For Ninja Multi-Config, Xcode and Visual Studio, the way we set up our
output directories would result in exectuables that can't run from the
build directory. Add the same sauce that we added to Jakt to insert
``$<CONFIG>`` where appropriate.
The code to convert a Gfx::IntPoint to a QPoint adjusted for the device
pixel ratio is a bit of a mouthful, and will be needed outside of Tab,
so move it to a helper that can be reused.
After ea682207d0, we need Userland/
included directly in these application executables. This only impacts
the build with Ladybird/CMakeLists.txt as the top level CMakeLists, as
the Lagom/ directory includes Userland/ globally.
It's no change in application behavior to have these objects owned by
the function-scope static map in Protocol.cpp, while allowing us to
remove some ugly FIXMEs from time immemorial.
The AppKit chrome currently handles all input events before selectively
forwarding those events to WebContent. This means that WebContent does
not see events like cmd+c.
Here, we make use of LibWebView's input handling and wait for LibWebView
to inform the chrome that it should handle the event itself.
The Qt chrome currently handles all input events before selectively
forwarding those events to WebContent. This means that WebContent does
not see events like ctrl+c.
Here, we make use of LibWebView's input handling and wait for LibWebView
to inform the chrome that it should handle the event itself.
It aligns better with the Filesystem Heirarchy Standard[1] to put our
program-specific helper programs that are not intended to be executed by
the user of the application in $prefix/libexec or in whatever the
packager sets as the CMake equivalent. Namely, on Debian systems this
should be /usr/lib/Ladybird or similar.
[1] https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.html#usrlibexec
Now we will only load resources from $build/share/Lagom. On macOS, we
load from the bundle directory Contents/Resources instead. This
simplifies the commands and environment variables needed to execute
Ladybird from the build directory, and makes our install setup less
awkward for distributions and packagers.