Previously, when starved for pages, *all* clean file-backed memory
would be released, which is quite excessive.
This patch instead releases just 1 page, since only 1 page is needed
to satisfy the request to `allocate_physical_page()`
Previously, we could only release *all* clean pages.
This patch makes it possible to release a specific amount of clean
pages. If the attempted number of pages to release is more than the
amount of clean pages, all clean pages will be released.
At the point at which we try to map the Region it was already added to
the Process region tree, so we have to make sure to remove it before
freeing it in the mapping failure path, otherwise the tree will contain
a dangling pointer to the free'd instance.
Until now, our only backup plan when running out of physical pages
was to try and purge volatile memory. If that didn't work out, we just
hung userspace out to dry with an ENOMEM.
This patch improves the situation by also considering clean, file-backed
pages (that we could page back in from disk).
This could be better in many ways, but it already allows us to boot to
WindowServer with 256 MiB of RAM. :^)
This deadlock was introduced with the creation of this API. The lock
order is such that we always need to take the page directory lock
before we ever take the MM lock.
This function violated that, as both Region creation and region
destruction require the pd and mm locks, but with the mm lock
already acquired we deadlocked with SMP mode enabled while other
threads were allocating regions.
With this change SMP boots to the desktop successfully for me,
(and then subsequently has other issues). :^)
There's no real value in separating physical pages to supervisor and
user types, so let's remove the concept and just let everyone to use
"user" physical pages which can be allocated from any PhysicalRegion
we want to use. Later on, we will remove the "user" prefix as this
prefix is not needed anymore.
We are limited on the amount of supervisor pages we can allocate, so
don't allocate from that pool. Supervisor pages are always below 16 MiB
barrier so using those was crucial when we used devices like the ISA
SoundBlaster 16 card, because that device required very low physical
addresses to be used.
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
Uncommitted pages (shared zero pages) can not contain any existing data
and can not be modified, so there's no point to committing a bunch of
extra pages to cover for them in the forked child.
Since both the parent process and child process hold a reference to the
COW committed set, once the child process exits, the committed COW
pages are effectively leaked, only being slowly re-claimed each time
the parent process writes to one of them, realizing it's no longer
shared, and uncommitting it.
In order to mitigate this we now hold a weak reference the parent
VMObject from which the pages are cloned, and we use it on destruction
when available to drop the reference to the committed set from it as
well.
This is basically unchanged since the beginning of 2020, which is a year
before we had proper ASLR.
Now that we have a proper ASLR implementation, we can turn this down a
bit, as it is no longer our only protection against predictable dynamic
loader addresses, and it actually obstructs the default loading address
of x86_64 quite frequently.
There's nothing stopping a userspace program from keeping a bunch of
threads around with a custom signal stack in a suspended state with
their normal thread stack mprotected to PROT_NONE.
OpenJDK seems to do this, for example.
This new type of VMObject will be used to coordinate switching safely
from graphical mode to text mode and vice-versa, by supplying a way to
remap all Regions that were created with this object, so mappings can be
changed according to the given state of system mode. This makes it quite
easy to give applications like WindowServer the feeling of having full
access to the framebuffer device from a DisplayConnector, but still keep
the Kernel in control to be able to safely switch to text console.
If we unregister from the RegionTree before unmapping, there's a race
where a new region can get inserted at the same address that we're about
to unmap. If this happens, ~Region() will then unmap the newly inserted
region, which now finds itself with cleared-out page table entries.
This had no business being in RegionTree, since RegionTree doesn't track
identity-mapped regions anyway. (We allow *any* address to be identity
mapped, not just the ones that are part of the RegionTree's range.)
This patch adds RegionTree::get_lock() which exposes the internal lock
inside RegionTree. We can then lock it from the outside when doing
lookups or traversal.
This solution is not very beautiful, we should find a way to protect
this data with SpinlockProtected or something similar. This is a stopgap
patch to try and fix the currently flaky CI.
...and remove the last remaining client of the API. It's no longer
possible to ask the RegionTree for a VM range. You can only ask it to
place your Region somewhere in available space.
This patch move AddressSpace (the per-process memory manager) to using
the new atomic "place" APIs in RegionTree as well, just like we did for
MemoryManager in the previous commit.
This required updating quite a few places where VM allocation and
actually committing a Region object to the AddressSpace were separated
by other code.
All you have to do now is call into AddressSpace once and it'll take
care of everything for you.
Instead of first allocating the VM range, and then inserting a region
with that range into the MM region tree, we now do both things in a
single atomic operation:
- RegionTree::place_anywhere(Region&, size, alignment)
- RegionTree::place_specifically(Region&, address, size)
To reduce the number of things we do while locking the region tree,
we also require callers to provide a constructed Region object.
This patch ports MemoryManager to RegionTree as well. The biggest
difference between this and the userspace code is that kernel regions
are owned by extant OwnPtr<Region> objects spread around the kernel,
while userspace regions are owned by the AddressSpace itself.
For kernelspace, there are a couple of situations where we need to make
large VM reservations that never get backed by regular VMObjects
(for example the kernel image reservation, or the big kmalloc range.)
Since we can't make a VM reservation without a Region object anymore,
this patch adds a way to create unbacked Region objects that can be
used for this exact purpose. They have no internal VMObject.)
RegionTree holds an IntrusiveRedBlackTree of Region objects and vends a
set of APIs for allocating memory ranges.
It's used by AddressSpace at the moment, and will be used by MM soon.
This patch stops using VirtualRangeAllocator in AddressSpace and instead
looks for holes in the region tree when allocating VM space.
There are many benefits:
- VirtualRangeAllocator is non-intrusive and would call kmalloc/kfree
when used. This new solution is allocation-free. This was a source
of unpleasant MM/kmalloc deadlocks.
- We consolidate authority on what the address space looks like in a
single place. Previously, we had both the range allocator *and* the
region tree both being used to determine if an address was valid.
Now there is only the region tree.
- Deallocation of VM when splitting regions is no longer complicated,
as we don't need to keep two separate trees in sync.
Now that we reclaim the memory range that is created by KASLR before
the start of the kernel image, there's no need to be conservative with
the KASLR offset.
This ensures we don't just waste the memory range between the default
base load address and the actual load address that was shifted by the
KASLR offset.
If we crashed in the middle of mapping in Regions, some of the regions
may not have a page directory yet, and will result in a crash when
Region::remap() is called.
If someone specifically wants contiguous memory in the low-physical-
address-for-DMA range ("super pages"), they can use the
allocate_dma_buffer_pages() helper.
Function-local `static constexpr` variables can be `constexpr`. This
can reduce memory consumption, binary size, and offer additional
compiler optimizations.
These changes result in a stripped x86_64 kernel binary size reduction
of 592 bytes.
As make<T> is infallible, it really should not be used anywhere in the
Kernel. Instead replace with fallible `new (nothrow)` calls, that will
eventually be error-propagated.
When a page fault led to the mapping of a new physical page, we were
updating the page tables for *every* region that shared the same
underlying VMObject.
Let's just not do that, avoiding a bunch of unnecessary page table
updates and TLB invalidations.
Ideally the x86 fault handler would only do x86 specific things and
delegate the rest of the work to MemoryManager. This patch moves some of
the address checks to a more generic place.
This avoids taking and releasing the MM lock just to reject an address
that we can tell from just looking at it that it won't ever be in the
kernel regions tree.
When the values we're setting are not actually u32s and the size of the
area we're setting is PAGE_SIZE-aligned and a multiple of PAGE_SIZE in
size, there's no point in using fast_u32_fill, as that forces us to use
STOSDs instead of STOSQs.
This allows us to enable Write-Combine on e.g. framebuffers,
significantly improving performance on bare metal.
To keep things simple we right now only use one of up to three bits
(bit 7 in the PTE), which maps to the PA4 entry in the PAT MSR, which
we set to the Write-Combine mode on each CPU at boot time.
We were already using a non-intrusive RedBlackTree, and since the kernel
regions tree is non-owning, this is a trivial conversion that makes a
bunch of the tree operations infallible (by being allocation-free.) :^)
PageDirectory gets initialized step-by-step in
PageDirectory::try_create_for_userspace(). This initialization may fail
anywhere in this function - for example, we may not be able to
allocate a directory table, in which case
PageDirectory::try_create_for_userspace() will return a null pointer.
We recognize this condition and early-return ENOMEM. However, at this
point, we need to correctly destruct the only partially initialized
PageDirectory. Previously, PageDirectory::~PageDirectory() would assume
that the object it was destructing was always fully initialized. It now
uses the new helper PageDirectory::is_cr3_initialized() to correctly
recognize when the directory table was not yet initialized. This helper
checks if the pointer to the directory table is null. Only if it is not
null does the destructor try to fetch the directory table using
PageDirectory::cr3().
These infallible resource factory functions were only there to ease the
conversion to the new factory functions. Since all child classes of
VMObject now use the fallible resource factory functions, we don't
need the infallible versions anymore.
This commit moves the allocation of the resources required for
SharedInodeVMObject from its constructors to its factory functions.
We're making this change to expose the fallibility of the allocation.
This commit moves the allocation of the resources required for
PrivateInodeVMObject from its constructors to its factory functions.
We're making this change to expose the fallibility of the allocation.
This commit moves the allocation of the resources required for
InodeVMObject from its constructors to the constructors of its child
classes.
We're making this change to give the child classes the chance to expose
the fallibility of the allocation.
This commit moves the allocation of the resources required for
AnonymousVMObject from its constructors to its factory functions.
We're making this change to expose the fallibility of the allocation.
This commit moves the allocation of the resources required for VMObject
from its constructors to the constructors of its child classes.
We're making this change to give the child classes the chance to expose
the fallibility of the allocation.
The only purpose of the remap() in Region::try_clone() is to ensure
non-writable page table entries for CoW regions. If a region is already
non-writable, there's no need to waste time updating the page tables.
When mapping or unmapping completely inaccessible memory regions,
we don't need to update the page tables at all. This saves a bunch of
time in some situations, most notably during dynamic linking, where we
make a large VM reservation and immediately throw it away. :^)
We were already only tracking kernel regions, this patch just makes it
more clear by having it reflected in the name of the registration
helpers.
We also stop calling them for userspace regions, avoiding some spinlock
action in such cases.
This optimization was added when region lookup was O(n), before we had
the O(log n) RedBlackTree. Let's remove it to simplify the code, as we
have no evidence that it remains valuable.