This change unfortunately cannot be atomically made without a single
commit changing everything.
Most of the important changes are in LibIPC/Connection.cpp,
LibIPC/ServerConnection.cpp and LibCore/LocalServer.cpp.
The notable changes are:
- IPCCompiler now generates the decode and decode_message functions such
that they take a Core::Stream::LocalSocket instead of the socket fd.
- IPC::Decoder now uses the receive_fd method of LocalSocket instead of
doing system calls directly on the fd.
- IPC::ConnectionBase and related classes now use the Stream API
functions.
- IPC::ServerConnection no longer constructs the socket itself; instead,
a convenience macro, IPC_CLIENT_CONNECTION, is used in place of
C_OBJECT and will generate a static try_create factory function for
the ServerConnection subclass. The subclass is now responsible for
passing the socket constructed in this function to its
ServerConnection base; the socket is passed as the first argument to
the constructor (as a NonnullOwnPtr<Core::Stream::LocalServer>) before
any other arguments.
- The functionality regarding taking over sockets from SystemServer has
been moved to LibIPC/SystemServerTakeover.cpp. The Core::LocalSocket
implementation of this functionality hasn't been deleted due to my
intention of removing this class in the near future and to reduce
noise on this (already quite noisy) PR.
Currently, the UnicodeLocale generator collects a list of known locales
from the CLDR before processing language display names. For each locale,
the identifier is broken into language, script, and region subtags, and
we create a list of seen languages. When processing display names, we
skip languages we hadn't seen in that first step.
This is insufficient for language display names like "en-GB", which do
not have an locale entry in the CLDR, and thus are skipped. So instead,
create the list of known languages by actually reading through the list
of languages which have a display name.
These patterns indicate how to display locale strings when that locale
contains multiple subtags. For example, "en-US" would be displayed as
"English (United States)".
Note there's a bit of an unfortunate duplication in the calendar enum
generated by UnicodeLocale and the existing enum generated by
UnicodeDateTimeFormat. The former contains every calendar known to the
CLDR, whereas the latter contains the calendars we've actually parsed
for DateTimeFormat (currently only Gregorian). The new enum generated
here can be removed once DateTimeFormat knows about all calendars.
Our generator is currently preferring the DST variant of the time zone
display names over the non-DST variant. LibTimeZone currently does not
have DST support, and operates in a mode that basically assumes DST does
not exist. Swap the display names for now just to be consistent until we
have DST support.
Note we will need to generate both of these variants and select the
appropriate one at runtime once we have DST support.
Now that number systems are generated as an enum, we can generated the
number system data in the order of that enum. This lets us perform
lookups of that data by index instead of a loop of string comparisons.
We had a hard-coded table of number system digits copied from ECMA-402.
Turns out these digits are in the CLDR, so let's parse the digits from
there instead of hard-coding them.
This adds an API to use LibTimeZone to convert a time zone such as
"America/New_York" to a GMT offset string like "GMT-5" (short form) or
"GMT-05:00" (long form).
This is a rather naive implementation, but serves as a first pass at
determining the GMT offset for a time zone at a particular point in
time. This implementation ignores DST (because we are not parsing any
RULE entries yet), and ignores any offset patterns of the form "Mon>4"
or "lastSun".
For example, generate "Etc/GMT+12" as "Etc_GMT_Ahead_12" (instead of as
"Etc_GMT_P12"). A little clearer what the name means without having to
know off-hand what "P" was representing.
The generate_mapping helper generates a series of structs like:
Array<SomeType, 1> s_mapping_key_0 {};
Array<SomeType, 2> s_mapping_key_1 {};
Array<SomeType, 3> s_mapping_key_2 {};
Array<Span<SomeType const>> s_mapping { {
s_mapping_key_0.span(),
s_mapping_key_1.span(),
s_mapping_key_2.span(),
} };
Where the names of the struct were generated by the format_mapping_name
lambda inside the helper. Rather than this lambda making assumptions on
how each generator wants to name its structs, add a parameter for the
caller to provide a naming formatter.
This is because the TimeZoneData generator will want pretty specific
identifier formatting rules.
When compiled using clang, an ambiguity error is detected between
`class AK::Time` aliased to `::Time` and the `struct ::Time` provided
in `GenerateTimeZoneData.cpp`. Solve this by moving most of the code in
an anonymous namespace.
Instead of making it a void function, checking for an exception, and
then receiving the relevant result via VM::last_value(), we can
consolidate all of this by using completions.
This allows us to remove more uses of VM::exception(), and all uses of
VM::last_value().
LibUnicode no longer needs to generate a list of time zone names that it
parsed from metaZones.json. We can defer to the TZDB for a golden list
of time zones.
The IANA Time Zone Database contains data needed, at least, for various
JavaScript objects. This adds plumbing for a parser and code generator
for this data. The generated data will be made available by LibTimeZone,
much like how UCD and CLDR data is available through LibUnicode.
The generator parses metaZones.json to form a mapping of meta zones to
time zones (AKA "golden zone" in TR-35). This parser errantly assumed
this was a 1-to-1 mapping.
In Unicode::get_time_zone_name(), we don't need to require that the time
zone is UTC for long- and short-style name lookups. This is required for
other styles, because they will depend on TZDB data - so move the VERIFY
to that scope.
When searching for the locale-specific flexible day period for a given
hour, we were neglecting to handle cases where the period crosses 00:00.
For example, the en locale defines a day period range of [21:00, 06:00).
When given the hour of 05:00, we were checking if (21 <= 5 && 5 < 6),
thus not recognizing that the hour falls in that period.
This is a temporary mechanism while LibUnicode is in an in-between state
where some symbols are weakly linked and others are dynamically loaded.
The latter require an asm() label to be loaded.
Currently, we load the generated Unicode symbols with dlopen at runtime.
This is unnecessary as of 565a880ce5.
Applications that want Unicode data now link directly against the shared
library holding that data. So the same functionality can be achieved
with weak symbols.
This requires an implementation of the "text preparation algorithm" as
specified here:
html.spec.whatwg.org/multipage/canvas.html#text-preparation-algorithm
However, we're missing a lot of things such as the
CanvasTextDrawingStyles interface, so most of the algorithm was not
implemented. Additionally, we also are not able to use a LineBox like
the algorithm suggests, because our layouting infra is not up to the
task yet. The prepare_text function does nothing other than figuring out
the width of the given text and return glyphs with offsets at the
moment.
ECMA-402 now supports short-offset, long-offset, short-generic, and
long-generic time zone name formatting. For example, in the en-US locale
the America/Eastern time zone would be formatted as:
short-offset: GMT-5
long-offset: GMT-05:00
short-generic: ET
long-generic: Eastern Time
We currently only support the UTC time zone, however. Therefore, this
very minimal implementation does not consider GMT offset or generic
display names. Instead, the CLDR defines specific strings for UTC.
OpenBSD gzip does not have the -k flag to keep the original after
extraction. Work around this by copying the original gzip to the dest
and then extracting. A bit of a hack, but only needs to be done for the
first-time or rebuilds
OpenBSD provides crypt in libc, not libcrypt. Adjust if/else to check
for either and proceed accordingly
Remove outdated OpenBSD checks when building the toolchain
This introduces a new library, LibSoftGPU, that incorporates all
rendering related features that formerly resided within LibGL itself.
Going forward we will make both libraries completely independent from
each other allowing LibGL to load different, possibly accelerated,
rendering backends.