We have seen cases where the map fails, but we return the region
to the caller, causing them to page fault later on when they touch
the region.
The fix is to always observe the return code of map/remap.
We are not using this for anything and it's just been sitting there
gathering dust for well over a year, so let's stop carrying all this
complexity around for no good reason.
The compiler can re-order the structure (class) members if that's
necessary, so if we make Process to inherit from ProcFSExposedComponent,
even if the declaration is to inherit first from ProcessBase, then from
ProcFSExposedComponent and last from Weakable<Process>, the members of
class ProcFSExposedComponent (including the Ref-counted parts) are the
first members of the Process class.
This problem made it impossible to safely use the current toggling
method with the write-protection bit on the ProcessBase members, so
instead of inheriting from it, we make its members the last ones in the
Process class so we can safely locate and modify the corresponding page
write protection bit of these values.
We make sure that the Process class doesn't expand beyond 8192 bytes and
the protected values are always aligned on a page boundary.
This was previously used for a single debug logging statement during
memory purging. There are no remaining users of this weak pointer,
so let's get rid of it.
Depending on the values it might be difficult to figure out whether a
value is decimal or hexadecimal. So let's make this more obvious. Also
this allows copying and pasting those numbers into GNOME calculator and
probably also other apps which auto-detect the base.
Before we start disabling acquisition of the big process lock for
specific syscalls, make sure to document and assert that all the
lock is held during all syscalls.
We leak a ref() onto every user process when constructing them,
either via Process::create_user_process(), or via Process::sys$fork().
This ref() is balanced by a corresponding unref() in
Thread::WaitBlockCondition::finalize().
Since kernel processes don't have a leaked ref() on them, this led to
an extra Process::unref() on kernel processes during finalization.
This happened during every boot, with the `init_stage2` process.
Found by turning off kfree() scrubbing. :^)
There appears to be no reason why the process registration needs
to happen under the space spin lock. As the first thread is not started
yet it should be completely uncontested, but it's still bad practice.
The new ProcFS design consists of two main parts:
1. The representative ProcFS class, which is derived from the FS class.
The ProcFS and its inodes are much more lean - merely 3 classes to
represent the common type of inodes - regular files, symbolic links and
directories. They're backed by a ProcFSExposedComponent object, which
is responsible for the functional operation behind the scenes.
2. The backend of the ProcFS - the ProcFSComponentsRegistrar class
and all derived classes from the ProcFSExposedComponent class. These
together form the entire backend and handle all the functions you can
expect from the ProcFS.
The ProcFSExposedComponent derived classes split to 3 types in the
manner of lifetime in the kernel:
1. Persistent objects - this category includes all basic objects, like
the root folder, /proc/bus folder, main blob files in the root folders,
etc. These objects are persistent and cannot die ever.
2. Semi-persistent objects - this category includes all PID folders,
and subdirectories to the PID folders. It also includes exposed objects
like the unveil JSON'ed blob. These object are persistent as long as the
the responsible process they represent is still alive.
3. Dynamic objects - this category includes files in the subdirectories
of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially,
these objects are always created dynamically and when no longer in need
after being used, they're deallocated.
Nevertheless, the new allocated backend objects and inodes try to use
the same InodeIndex if possible - this might change only when a thread
dies and a new thread is born with a new thread stack, or when a file
descriptor is closed and a new one within the same file descriptor
number is opened. This is needed to actually be able to do something
useful with these objects.
The new design assures that many ProcFS instances can be used at once,
with one backend for usage for all instances.
The Process::Handler type has KResultOr<FlatPtr> as its return type.
Using a different return type with an equally-sized template parameter
sort of works but breaks once that condition is no longer true, e.g.
for KResultOr<int> on x86_64.
Ideally the syscall handlers would also take FlatPtrs as their args
so we can get rid of the reinterpret_cast for the function pointer
but I didn't quite feel like cleaning that up as well.
This adds just enough stubs to make the kernel compile on x86_64. Obviously
it won't do anything useful - in fact it won't even attempt to boot because
Multiboot doesn't support ELF64 binaries - but it gets those compiler errors
out of the way so more progress can be made getting all the missing
functionality in place.
This change looks more involved than it actually is. This simply
reshuffles the previous Process constructor and splits out the
parts which can fail (resource allocation) into separate methods
which can be called from a factory method. The factory is then
used everywhere instead of the constructor.
This turns the perfcore format into more a log than it was before,
which lets us properly log process, thread and region
creation/destruction. This also makes it unnecessary to dump the
process' regions every time it is scheduled like we did before.
Incidentally this also fixes 'profile -c' because we previously ended
up incorrectly dumping the parent's region map into the profile data.
Log-based mmap support enables profiling shared libraries which
are loaded at runtime, e.g. via dlopen().
This enables profiling both the parent and child process for
programs which use execve(). Previously we'd discard the profiling
data for the old process.
The Profiler tool has been updated to not treat thread IDs as
process IDs anymore. This enables support for processes with more
than one thread. Also, there's a new widget to filter which
process should be displayed.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
This should provide some speed up, as currently searches for regions
containing a given address were performed in O(n) complexity, while
this container allows us to do those in O(logn).
The previous architecture had a huge flaw: the pointer to the protected
data was itself unprotected, allowing you to overwrite it at any time.
This patch reorganizes the protected data so it's part of the Process
class itself. (Actually, it's a new ProcessBase helper class.)
We use the first 4 KB of Process objects themselves as the new storage
location for protected data. Then we make Process objects page-aligned
using MAKE_ALIGNED_ALLOCATED.
This allows us to easily turn on/off write-protection for everything in
the ProcessBase portion of Process. :^)
Thanks to @bugaevc for pointing out the flaw! This is still not perfect
but it's an improvement.
Process member variable like m_euid are very valuable targets for
kernel exploits and until now they have been writable at all times.
This patch moves m_euid along with a whole bunch of other members
into a new Process::ProtectedData struct. This struct is remapped
as read-only memory whenever we don't need to write to it.
This means that a kernel write primitive is no longer enough to
overwrite a process's effective UID, you must first unprotect the
protected data where the UID is stored. :^)
Since we know for sure that the virtual memory regions in the new
process being created are not being used on any CPU, there's no need
to do TLB flushes for every mapped page.
This patch adds Space, a class representing a process's address space.
- Each Process has a Space.
- The Space owns the PageDirectory and all Regions in the Process.
This allows us to reorganize sys$execve() so that it constructs and
populates a new Space fully before committing to it.
Previously, we would construct the new address space while still
running in the old one, and encountering an error meant we had to do
tedious and error-prone rollback.
Those problems are now gone, replaced by what's hopefully a set of much
smaller problems and missing cleanups. :^)
This patch adds sys$msyscall() which is loosely based on an OpenBSD
mechanism for preventing syscalls from non-blessed memory regions.
It works similarly to pledge and unveil, you can call it as many
times as you like, and when you're finished, you call it with a null
pointer and it will stop accepting new regions from then on.
If a syscall later happens and doesn't originate from one of the
previously blessed regions, the kernel will simply crash the process.