Now the DMIDecoder code is more safer, because we don't use raw pointers
or references to objects or data that are located in the physical
address space, so an accidental dereference cannon happen easily.
Instead, we use the PhysicalAddress class to represent those addresses.
Also, the initializer_parser() method is simplified.
syscall_handler was not actually updating the value in regs->eax, so the
gettid() was always returning 85: the value of regs->eax was not
actually updated, and it remained the one from Userland (the value of
SC_gettid).
The syscall_handler was modified to actually get a pointer to
RegisterState, so any changes to it will actually be saved.
NOTE: This was actually more of a compiler optimization:
On the SC_gettid flow, we saved in regs.eax the return value of
sys$gettid(), but the compiler discarded it, since it followed a return.
On a normal flow, the value of regs.eax was reused in
tracer->did_syscall, so the compiler actually updated the value.
This patch allows roll notes to be of different sizes. This necessitates
a new internal representation of time. BPM and time signatures are
mostly implemented but not exposed.
Roll notes are now sample-accurate and the grid is aligned to 60 BPM
4/4. The roll is divided by the time signature raised to some power of
2, giving the musical divisions of (in the case of 4/4) 16, 32, 64 etc.
Before, our timing was derived from the buffer size and we relied on
that to implement delay. Delay has been rewritten to be sample-granular.
It's now exposed as the proper "divisions of a beat".
Something to be wary of is that the last buffer in the loop is also used
for the start of the next loop. In other words, we loop mid-buffer. This
means we write WAVs with a tiny bit of silence due to breaking the loop
after filling half a buffer.
The data structure for the roll is an array of SinglyLinkedLists of
RollNotes. Separating by pitch (via the array layout) makes insertion
much simpler and faster. Using sorted lists (and thus
SinglyLinkedListIterators) to do lookups is very quick as you know the
sample of the next note and can just compare it to the current sample. I
implemented this with HashMaps and the cost of lookups was abysmal. I
also tried a single SinglyLinkedList and the insertion code got even
more complicated than it already is.
This commit replaces SinglyLinkedListIterator::universal_end() with an
empty SinglyLinkedListIterator(). Piano needs this in order to
initialize a member array of iterators without 84 lines of
universal_end().
set_interrupted_by_death was never called whenever a thread that had
a joiner died, so the joiner remained with the joinee pointer there,
resulting in an assertion fail in JoinBlocker: m_joinee pointed to
a freed task, filled with garbage.
Thread::current->m_joinee may not be valid after the unblock
Properly return the joinee exit value to the joiner thread.
On 32-bit platforms, INT32_MIN == -INT32_MIN, so we can't expect this
to always work:
if (pid < 0)
positive_pid = -pid; // may still be negative!
This happens because the -INT32_MIN expression becomes a long and is
then truncated back to an int.
Fixes#1312.
It was possible to send signals to processes that you were normally not
allowed to send signals to, by calling ioctl(tty, TIOCSPGRP, targetpid)
and then generating one of the TTY-related signals on the calling
process's TTY (e.g by pressing ^C, ^Z, etc.)