The `m_should_block` member variable that many of the Thread::Blocker
subclasses had was really only used to carry state from the constructor
to the immediate-unblock-without-blocking escape hatch.
This patch refactors the blockers so that we don't need to hold on
to this flag after setup_blocker(), and instead the return value from
setup_blocker() is the authority on whether the unblock conditions
are already met.
This was previously used after construction to check for early unblock
conditions that couldn't be communicated from the constructor.
Now that we've moved early unblock checks from the constructor into
setup_blocker(), we don't need should_block() anymore.
Instead of registering with blocker sets and whatnot in the various
Blocker subclass constructors, this patch moves such initialization
to a separate setup_blocker() virtual.
setup_blocker() returns false if there's no need to actually block
the thread. This allows us to bail earlier in Thread::block().
Namely, will_unblock_immediately_without_blocking(Reason).
This virtual function is called on a blocker *before any block occurs*,
if it turns out that we don't need to block the thread after all.
This can happens for one of two reasons:
- UnblockImmediatelyReason::UnblockConditionAlreadyMet
We don't need to block the thread because the condition for
unblocking it is already met.
- UnblockImmediatelyReason::TimeoutInThePast
We don't need to block the thread because a timeout was specified
and that timeout is already in the past.
This patch does not introduce any behavior changes, it's only meant to
clarify this part of the blocking logic.
Now that the old PCI::Device was removed, we can complete the PCI
changes by making the PCI::DeviceController to be named PCI::Device.
Really the entire purpose and the distinction between the two was about
interrupts, but since this is no longer a problem, just rename it to
simplify things further.
I created this class a long time ago just to be able to quickly make a
PCI device to also represent an interrupt handler (because PCI devices
have this capability for most devices).
Then after a while I introduced the PCI::DeviceController, which is
really almost the same thing (a PCI device class that has Address member
in it), but is not tied to interrupts so it can have no interrupts, or
spawn interrupt handlers however it wants to seems fit.
However I decided it's time to say goodbye for this class for
a couple of reasons:
1. It made a whole bunch of weird patterns where you had a PCI::Device
and a PCI::DeviceController being used in the topic of implementation,
where originally, they meant to be used mutually exclusively (you
can't and really don't want to use both).
2. We can really make all the classes that inherit from PCI::Device
to inherit from IRQHandler at this point. Later on, when we have MSI
interrupts support, we can go further and untie things even more.
3. It makes it possible to simplify the VirtIO implementation to a great
extent. While this commit almost doesn't change it, future changes
can untangle some complexity in the VirtIO code.
For UHCIController, E1000NetworkAdapter, NE2000NetworkAdapter,
RTL8139NetworkAdapter, RTL8168NetworkAdapter, E1000ENetworkAdapter we
are simply making them to inherit the IRQHandler. This makes some sense,
because the first 3 devices will never support anything besides IRQs.
For the last 2, they might have MSI support, so when we start to utilize
those, we might need to untie these classes from IRQHandler and spawn
IRQHandler(s) or MSIHandler(s) as needed.
The VirtIODevice class is also a case where we currently need to use
both PCI::DeviceController and IRQHandler classes as parents, but it
could also be untied from the latter.
Namely, unblock_all_blockers_whose_conditions_are_met().
The old name made it sound like things were getting unblocked no matter
what, but that's not actually the case.
What this actually does is iterate through the set of blockers,
unblocking those whose conditions are met. So give it a (very) verbose
name that errs on the side of descriptiveness.
This has several benefits:
1) We no longer just blindly derefence a null pointer in various places
2) We will get nicer runtime error messages if the current process does
turn out to be null in the call location
3) GCC no longer complains about possible nullptr dereferences when
compiling without KUBSAN
Previously when trying to debug the system's routing, the ARP
information would clutter the output and make it difficult to focus on
the routing decisions. It would be better to specify these
debug messages under ARP_DEBUG.
This patch removes KResult::operator int() and deals with the fallout.
This forces a lot of code to be more explicit in its handling of errors,
greatly improving readability.
When TCP sockets successfully establish a connection, any SO_ERROR
should be cleared back to success. For example, SO_ERROR gets set to
EINPROGRESS on asynchronous connect calls and should be cleared when
the socket moves to the Established state.
The only two paths for copying strings in the kernel should be going
through the existing Userspace<char const*>, or StringArgument methods.
Lets enforce this by removing the option for using the raw cstring APIs
that were previously available.
This fixes the placeholder stub for the SO_ERROR via getsockopt. It
leverages the m_so_error value that each socket maintains. The SO_ERROR
option obtains and then clears this field, which is useful when checking
for errors that occur between socket calls. This uses an integer value
to return the SO_ERROR status.
Resolves#146
Note: TCPSocket::create_client() has a dubious locking process where
the sockets by tuple table is first shared lock to check if the socket
exists and bail out if it does, then unlocks, then exclusively locks to
add the tuple. There could be a race condition where two client
creation requests for the same tuple happen at the same time and both
cleared the shared lock check. When in doubt, lock exclusively the
whole time.
Now that all KResult and KResultOr are used consistently throughout the
kernel, it's no longer necessary to return negative error codes.
However, we were still doing that in some places, so let's fix all those
(bugs) by removing the minuses. :^)
The IPv4Socket requires a DoubleBuffer for storage of any data it
received on the socket. However it was previously using the default
constructor which can not observe allocation failure. Address this by
plumbing the receive buffer through the various derived classes.
LocalSockets keep a DoubleBuffer for both client and server usage.
This change converts the usage from using the default constructor
which is unable to observe OOM, to the new try_create factory and
plumb the result through the constructor.