This abstraction layer is mainly for ATA ports (AHCI ports, IDE ports).
The goal is to create a convenient and flexible framework so it's
possible to expand to support other types of controller (e.g. Intel PIIX
and ICH IDE controllers) and to abstract operations that are possible on
each component.
Currently only the ATA IDE code is affected by this, making it much
cleaner and readable - the ATA bus mastering code is moved to the
ATAPort code so more implementations in the near future can take
advantage of such functionality easily.
In addition to that, the hierarchy of the ATA IDE code resembles more of
the SATA AHCI code now, which means the IDEChannel class is solely
responsible for getting interrupts, passing them for further processing
in the ATAPort code to take care of the rest of the handling logic.
Parts of our build system and scripts rely on the fact that we are
cross-compiling. For now, remove the "try to build natively" part to get
the build running and leave a TODO for later.
Plural rules in the CLDR are of the form:
"cs": {
"pluralRule-count-one": "i = 1 and v = 0 @integer 1",
"pluralRule-count-few": "i = 2..4 and v = 0 @integer 2~4",
"pluralRule-count-many": "v != 0 @decimal 0.0~1.5, 10.0, 100.0 ...",
"pluralRule-count-other": "@integer 0, 5~19, 100, 1000, 10000 ..."
}
The syntax is described here:
https://unicode.org/reports/tr35/tr35-numbers.html#Plural_rules_syntax
There are up to 2 sets of rules for each locale, a cardinal set and an
ordinal set. The approach here is to generate a C++ function for each
set of rules. Each condition in the rules (e.g. "i = 1 and v = 0") is
transpiled to a C++ if-statement within its function. Then lookup tables
are generated to match locales to their generated functions.
NOTE: -Wno-parentheses-equality is added to the LibUnicodeData compile
flags because the generated plural rules have lots of extra parentheses
(because e.g. we need to selectively negate and combine rules). The code
to generate only exactly the right number of parentheses is quite hairy,
so this just tells the compiler to ignore the extras.
Add overrides for serenity_bin and serenity_lib to allow the actual
CMakeLists.txt from Userland to be used to build as many services as
possible without adding more clutter to Meta/Lagom/CMakeLists.txt
In preparation for future refactoring of Lagom, let's use the variables
from GNUInstallDirs as much as possible for the helper macros and other
scripts used by the main build already.
The Mach-O file format does not have ELF's interposition rules, so this
flag does not make sense for macOS builds. While GCC silently accepts
the unsupported option, Clang issues a warning for it.
This commit makes it possible to build Lagom with LLVM from Homebrew.
By default we enable the Kernel Undefined Behavior Sanitizer, which
checks for undefined behavior at runtime. However, sometimes a developer
might want to turn that off, so now there is a easy way to do that.
This option sets -fprofile-instr-generate -fcoverage-mapping for Clang
builds only on almost all of Userland. Loader and LibTimeZone are
exempt. This can be used for generating code coverage reports, or even
PGO in the future.
This new class with an admittedly long OOP-y name provides a circular
queue in shared memory. The queue is a lock-free synchronous queue
implemented with atomics, and its implementation is significantly
simplified by only accounting for one producer (and multiple consumers).
It is intended to be used as a producer-consumer communication
datastructure across processes. The original motivation behind this
class is efficient short-period transfer of audio data in userspace.
This class includes formal proofs of several correctness properties of
the main queue operations `enqueue` and `dequeue`. These proofs are not
100% complete in their existing form as the invariants they depend on
are "handwaved". This seems fine to me right now, as any proof is better
than no proof :^). Anyways, the proofs should build confidence that the
implemented algorithms, which are only roughly based on existing work,
operate correctly in even the worst-case concurrency scenarios.
Instead of downloading nearly 20 files individually, we can download a
single .zip file similar to how we download a single CLDR .zip. This is
to reduce the number of connections/downloads to/from unicode.org.
WASM_SPEC_TEST_TAR_PATH actually refers to a tarball that has already
been decompressed with gzip, so running `tar -xzf` on it fails.
I introduced this mistake in 66582a875f.
There is no need to keep an intermediary plain .tar file around, we can
pass the WASM_SPEC_TEST_GZ_PATH .tar.gz directly to `tar -xzf`.
Currently this can parse XML and resolve external resources/references,
and read a DTD (but not apply or verify its rules).
That's good enough for _most_ XHTML documents as the HTML 5 spec
enforces its own rules about document well-formedness, and does not make
use of XML DTDs (aside from a list of predefined entities).
An accompanying `xml` utility is provided that can read and dump XML
documents, and can also run the XML conformance test suite.
While GNU tar automatically detects the used compression algorithm,
POSIX requires that we specify -z if the tarball is compressed with
gzip.
Fixes a build error on OpenBSD.
We have seen some cases where the build fails for folks, and they are
missing unzip/tar/gzip etc. We can catch some of these in CMake itself,
so lets make sure to handle that uniformly across the build system.
The REQUIRED flag to `find_program` was only added on in CMake 3.18 and
above, so we can't rely on that to actually halt the program execution.
With regular builds, the generated IPC headers exist inside the Build
directory. The path Userland/Services under the build directory is
added to the include path.
For in-system builds the IPC headers are installed at /usr/include/.
To support this, we add /usr/include/Userland/Services to the build path
when building from Hack Studio.
Co-Authored-By: Andrew Kaster <akaster@serenityos.org>
This package was originally meant to be included in CLDR version 40, but
was missed in their release scripts. This has been resolved:
https://unicode-org.atlassian.net/browse/CLDR-15158
Unfortunately, the CLDR was re-released with the same version number. So
to bust the build's CLDR cache, change the "version" used to detect that
we need to redownload the CLDR.
This commit removes the usage of HashMap in Mutex, thereby making Mutex
be allocation-free.
In order to achieve this several simplifications were made to Mutex,
removing unused code-paths and extra VERIFYs:
* We no longer support 'upgrading' a shared lock holder to an
exclusive holder when it is the only shared holder and it did not
unlock the lock before relocking it as exclusive. NOTE: Unlike the
rest of these changes, this scenario is not VERIFY-able in an
allocation-free way, as a result the new LOCK_SHARED_UPGRADE_DEBUG
debug flag was added, this flag lets Mutex allocate in order to
detect such cases when debugging a deadlock.
* We no longer support checking if a Mutex is locked by the current
thread when the Mutex was not locked exclusively, the shared version
of this check was not used anywhere.
* We no longer support force unlocking/relocking a Mutex if the Mutex
was not locked exclusively, the shared version of these functions
was not used anywhere.
This sets up the generator plumbing to create the relative-time data
files. This data could probably be included in the date-time generator,
but that generator is large enough that I'd rather put this tangentially
related data in its own file.
This check isn't needed because download_file() will check if it exists
already before doing the download. Worse, it would prevent the generator
target from being defined if the file existed, which then made CMake not
realize the generated files were important and delete them.
After fixing the CMake file to use the correct paths, users may have had
to manually remove the existing downloaded pnp.ids.html for CMake to re-
run the generator. So this change renames the downloaded file to
pnp_ids.html to ensure everyone picks up that change without manual
intervention.
Code generators that generate their files for both Lagom and Serenity
have a blob in their CMake file like this:
set(TIME_ZONE_DATA_HEADER LibTimeZone/TimeZoneData.h)
set(TIME_ZONE_DATA_IMPLEMENTATION LibTimeZone/TimeZoneData.cpp)
set(TIME_ZONE_META_TARGET_PREFIX LibTimeZone_)
if (CMAKE_CURRENT_BINARY_DIR MATCHES ".*/LibTimeZone")
# Serenity build.
set(TIME_ZONE_DATA_HEADER TimeZoneData.h)
set(TIME_ZONE_DATA_IMPLEMENTATION TimeZoneData.cpp)
set(TIME_ZONE_META_TARGET_PREFIX "")
endif()
LibEDID generates files only for Serenity, but was using the Lagom build
version of the _HEADER, _IMPLEMENTATION, and _PREFIX variables. Thus if
pnp_ids.cmake was ever touched, the following error would be raised:
Userland/Libraries/LibEDID/EDID.cpp:18:18: fatal error:
LibEDID/PnpIDs.h: No such file or directory
18 | # include <LibEDID/LibEDID/PnpIDs.h>
Use the Serenity paths in pnp_ids.cmake and in the #include within
LibEDID itself.