This keeps us from accidentally building toolchains that don't make it
through a clean build if we build them using a populated sysroot, as it
would otherwise detect libpthread and friends and try to pull them in
while LibC is not yet built.
Add a patch to let llvm's InstrProfiling modules know serenity supports
all the Unix-y features required to make -fprofile-instr-generate and
-fcoverage-mapping work properly on target.
Besides a version bump, the following changes have been made to our
toolchain infrastructure:
- LLVM/Clang is now built with -march=native if the host compiler
supports it. An exception to this is CI, as the toolchain cache is
shared among many different machines there.
- The LLVM tarball is not re-extracted if the hash of the applied
patches doesn't differ.
- The patches have been split up into atomic chunks.
- Port-specific patches have been integrated into the main patches,
which will aid in the work towards self-hosting.
- <sysroot>/usr/local/lib is now appended to the linker's search path by
default.
- --pack-dyn-relocs=relr is appended to the linker command line by
default, meaning ports take advantage of RELR relocations without any
patches or additional compiler flags.
The formatting of LLVM port's package.sh has been bothering me, so I
also indented the arguments to the CMake invocation.
Make sure that we set CMAKE_NM, it's possible that some version of
CMake could choose a host nm binary instead of the ones we just built.
It's unlikely that host nm will understand our .dyn.relr segments unless
it's from binutils 2.38 or higher, so it might complain.
Our build of LLVM's objcopy now supports the single missing feature
(--update-section) that previously forced us to use the one from GNU
Binutils. This means that there is no reason anymore to build Binutils
alongside LLVM's tools.
This property tells CMake that if a library is missing a SONAME field,
the link editor(s) we use will insert the full path to the library into
the binary. This is the behaivor of GNU ld compatible linkers, so let's
avoid that possiblity by telling CMake that it really doesn't want to
let the linker embed the full path to the lib. This is especially
important when cross-compiling things for ports and such, as the full
path to the lib will have absolutely nothing to do with the runtime path
By setting CMAKE_MODULE_PATH in the LLVM initial cache scripts, we can
make the "SerenityOS" CMAKE_SYSTEM_NAME usable in the builds of
compiler-rt, libunwind, libcxxabi and libcxx.
This simplifies some toolchain patches and brings the cross-compiler
patches closer to the Port's patches, and closer to something
upstreamable.
If we have the LLVM port installed, CMake might pick up some of the
tools installed as part of it (`llvm-ar`, `llvm-strip`, etc.) instead of
the ones belonging to the host toolchain. These, of course, can't be run
on the host platform, so builds would eventually fail. This made it
impossible to rebuild the LLVM toolchain.
We now set these variables explicitly when compiling the LLVM runtime
libraries in order to avoid this issue.
If we want to use clang-tidy on the codebase, we'll need to build
clang-tidy from an LLVM that has been patched and built with Serenity
cross-compilation support.
We were previously using TRY_COMPILE_TARGET_TYPE to bypass the compiler
check at the beginning of the CMake build, since we don't have LibC
available and therefore can't link at that point.
However, this breaks a lot of assumptions in try_compile when it comes
to library checks. While this was the main idea behind our usage of the
flag, it also has some really nasty side effects when software wants
to find out what library a symbol is in.
Instead, just manually tell CMake that our compiler works as intended
and keep the target type setting at its default.
`CMAKE_INSTALL_PREFIX` is supposed to be the in-system installation
path. The sysroot path on the host doesn't belong there, since other
applications will duplicate that path when applying their respective
sysroot.
This commit updates the Clang toolchain's version to 13.0.0, which comes
with better C++20 support and improved handling of new features by
clang-format. Due to the newly enabled `-Bsymbolic-functions` flag, our
Clang binaries will only be 2-4% slower than if we dynamically linked
them, but we save hundreds of megabytes of disk space.
The `BuildClang.sh` script has been reworked to build the entire
toolchain in just three steps: one for the compiler, one for GNU
binutils, and one for the runtime libraries. This reduces the complexity
of the build script, and will allow us to modify the CI configuration to
only rebuild the libraries when our libc headers change.
Most of the compile flags have been moved out to a separate CMake cache
file, similarly to how the Android and Fuchsia toolchains are
implemented within the LLVM repo. This provides a nicer interface than
the heaps of command-line arguments.
We no longer build separate toolchains for each architecture, as the
same Clang binary can compile code for multiple targets.
The horrible mess that `SERENITY_CLANG_ARCH` was, has been removed in
this commit. Clang happily accepts an `i686-pc-serenity` target triple,
which matches what our GCC toolchain accepts.
Replace the old logic where we would start with a host build, and swap
all the CMake compiler and target variables underneath it to trick
CMake into building for Serenity after we configured and built the Lagom
code generators.
The SuperBuild creates two ExternalProjects, one for Lagom and one for
Serenity. The Serenity project depends on the install stage for the
Lagom build. The SuperBuild also generates a CMakeToolchain file for the
Serenity build to use that replaces the old toolchain file that was only
used for Ports.
To ensure that code generators are rebuilt when core libraries such as
AK and LibCore are modified, developers will need to direct their manual
`ninja` invocations to the SuperBuild's binary directory instead of the
Serenity binary directory.
This commit includes warning coalescing and option style cleanup for the
affected CMakeLists in the Kernel, top level, and runtime support
libraries. A large part of the cleanup is replacing USE_CLANG_TOOLCHAIN
with the proper CMAKE_CXX_COMPILER_ID variable, which will no longer be
confused by a host clang compiler.
This enables building usermode programs with exception handling. It also
builds a libstdc++ without exception support for the kernel.
This is necessary because the libstdc++ that gets built is different
when exceptions are enabled. Using the same library binary would
require extensive stubs for exception-related functionality in the
kernel.