The current implementation of DevFS resembles the linux devtmpfs, and
not the traditional DevFS, so let's rename it to better represent the
direction of the development in regard to this filesystem.
The abbreviation for DevTmpFS is still "dev", because it doesn't add
value as a commandline option to make it longer.
In quick summary - DevFS in unix OSes is simply a static filesystem, so
device nodes are generated and removed by the kernel code. DevTmpFS
is a "modern reinvention" of the DevFS, so it is much more like a TmpFS
in the sense that not only it's stored entirely in RAM, but the userland
is responsible to add and remove devices nodes as it sees fit, and no
kernel code is directly being involved to keep the filesystem in sync.
This was a weird KBuffer API that assumed failure was impossible.
This patch converts it to a modern KResultOr<NonnullOwnPtr<KBuffer>> API
and updates the two clients to the new style.
Make use of the new FileDescription::try_serialize_absolute_path() to
avoid String in favor of KString throughout much of sys$execve() and
its helpers.
I had to look at this for a moment before I realized that sys$execve()
and the spawning of /bin/SystemServer at boot are taking two different
paths out of exec().
Add a comment to help the next person looking at it. :^)
Before this patch, we were leaking a ref on the open file description
used for the interpreter (the dynamic loader) in sys$execve().
This surfaced when adapting the syscall to use TRY(), since we were now
correctly transferring ownership of the interpreter to Process::exec()
and no longer holding on to a local copy of it (in `elf_result`).
Fixing the leak uncovered another problem. The interpreter description
would now get destroyed when returning from do_exec(), which led to a
kernel panic when attempting to acquire a mutex.
This happens because we're in a particularly delicate state when
returning from do_exec(). Everything is primed for the upcoming context
switch into the new executable image, and trying to block the thread
at this point will panic the kernel.
We fix this by destroying the interpreter description earlier in
do_exec(), at the point where we no longer need it.
When executing a dynamically linked program, we need to pass the main
program executable via a file descriptor to the dynamic loader.
Before this patch, we were allocating an FD for this purpose long after
it was safe to do anything fallible. If we were unable to allocate an
FD we would simply panic the kernel(!)
We now hoist the allocation so it can fail before we've committed to
a new executable.
Due to the use of ELF::Image::for_each_program_header(), we were
previously unable to use TRY() in the ELF loading code (since the return
statement inside TRY() would only return from the iteration callback.)
Once we commit to a new executable image in sys$execve(), we can no
longer return with an error to whoever called us from userspace.
We must make sure to surface any potential errors before that point.
This patch moves signal trampoline allocation before the commit.
A number of other things remain to be moved.
We previously allowed Thread to exist in a state where its m_name was
null, and had to work around that in various places.
This patch removes that possibility and forces those who would create a
thread (or change the name of one) to provide a NonnullOwnPtr<KString>
with the name.
- Renamed try_create_absolute_path() => try_serialize_absolute_path()
- Use KResultOr and TRY() to propagate errors
- Don't call this when it's only for debug logging
- Use KResultOr and TRY() to propagate errors
- Check for OOM errors
- Move allocation out of constructors
There's still a lot more to do here, as SysFS is still quite brittle
in the face of memory pressure.
This expands the reach of error propagation greatly throughout the
kernel. Sadly, it also exposes the fact that we're allocating (and
doing other fallible things) in constructors all over the place.
This patch doesn't attempt to address that of course. That's work for
our future selves.
Instead of checking it at every call site (to generate EBADF), we make
file_description(fd) return a KResultOr<NonnullRefPtr<FileDescription>>.
This allows us to wrap all the calls in TRY(). :^)
The only place that got a little bit messier from this is sys$mount(),
and there's a whole bunch of things there in need of cleanup.