Previously we would've copied the bytecode instead of moving the chunks
around, use the fancy new DisjointChunks<T> abstraction to make that
happen automagically.
This decreases vector copies and uses of memmove() by nearly 10x :^)
- Make sure that all the Repeat ops are reset (otherwise the operation
would not be correct when going over the Repeat op a second time)
- Make sure that all matches that are allowed to fail are backed by a
fork, otherwise the last failing fork would not have anywhere to
return to.
Fixes#9707.
Currently, when we need to repeat an instruction N times, we simply add
that instruction N times in a for-loop. This doesn't scale well with
extremely large values of N, and ECMA-262 allows up to N = 2^53 - 1.
Instead, add a new REPEAT bytecode operation to defer this loop from the
parser to the runtime executor. This allows the parser to complete sans
any loops (for this instruction), and allows the executor to bail early
if the repeated bytecode fails.
Note: The templated ByteCode methods are to allow the Posix parsers to
continue using u32 because they are limited to N = 2^20.
This struct holds a counter for the number of executed operations, and
vectors for matches, captures groups, and named capture groups. Each of
the vectors is unused. Remove the struct and just keep a separate
counter for the executed operations.
Combining these into one list helps reduce the size of MatchState, and
as a result, reduces the amount of memory consumed during execution of
very large regex matches.
Doing this also allows us to remove a few regex byte code instructions:
ClearNamedCaptureGroup, SaveLeftNamedCaptureGroup, and NamedReference.
Named groups now behave the same as unnamed groups for these operations.
Note that SaveRightNamedCaptureGroup still exists to cache the matched
group name.
This also removes the recursion level from the MatchState, as it can
exist as a local variable in Matcher::execute instead.
This changes LibRegex to parse the property escape as a Variant of
Unicode Property & General Category values. A byte code instruction is
added to perform matching based on General Category values.
This supports some binary property matching. It does not support any
properties not yet parsed by LibUnicode, nor does it support value
matching (such as Script_Extensions=Latin).
ECMA262 requires that the capture groups only contain the values from
the last iteration, e.g. `((c)(a)?(b))` should _not_ contain 'a' in the
second capture group when matching "cabcb".
This commit makes LibRegex (mostly) capable of operating on any of
the three main string views:
- StringView for raw strings
- Utf8View for utf-8 encoded strings
- Utf32View for raw unicode strings
As a result, regexps with unicode strings should be able to properly
handle utf-8 and not stop in the middle of a code point.
A future commit will update LibJS to use the correct type of string
depending on the flags.
Previously this would return a pointer which could be null if the
requested opcode was invalid. This should never be the case though
so let's VERIFY() that instead.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
This only applies to the ECMA262 parser.
This behaviour is an ECMA262-specific quirk, such references always
generate zero-length matches (even on subsequent passes).
Also adds a test in LibJS's test suite.
Fixes#6039.
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.