There are two parts to this fix:
- First, StyleProperties::transformations() would previously omit calc()
values entirely when returning the list of transformations. This was
very confusing to StackingContext which then tried to index into the
list based on faulty assumptions. Fix this by emitting calc values.
- Second, StackingContext::get_transformation_matrix() now always calls
resolve() on length-percentages. This takes care of actually resolving
calc() values. If no reference value for percentages is provided, we
default to 0px.
This stops LibWeb from asserting on websites with calc() in transform
values, such as https://qt.io/ :^)
We were implicitly converting the throw completion's value into a normal
completion in `AsyncFunctionDriverWrapper::continue_async_execution`,
which meant the routine generated by `generate_await` didn't know that
the value had to be thrown when execution resumed.
Without this change, we mistakenly pass 13 tests for `Array.fromAsync`,
which we do not implement yet. But even with that "regression", we pass
17 more test262 tests in total.
If an exception was thrown while evaluating the argument of an `await`
expression, we should jump to the continuation block instead of eagerly
rejecting the caller async function.
This restores the behavior prior to the addition of the separate `Await`
instruction in d66eb4e3.
We're gonna call parse_a_comma_separated_list_of_component_values from
another cpp file soon, so let's prepare for that by instantiating the
specific version we need.
This does not implement extra functionality on top of the basic parser,
but allows multiple places in LibWeb to call the 'correct' interface for
when it is fully implemented.
Since we deliberately skip positioned elements in paint_descendants(),
we have to make sure we actually paint them in the subsequent
paint_internal() pass.
Before this change, we were only painting positioned elements whose
paintable was a PaintableBox, neglecting inline-level relpos elements.
For a long time, our shutdown procedure has basically been:
- Acquire big process lock.
- Switch framebuffer to Kernel debug console.
- Sync and lock all file systems so that disk caches are flushed and
files are in a good state.
- Use firmware and architecture-specific functionality to perform
hardware shutdown.
This naive and simple shutdown procedure has multiple issues:
- No processes are terminated properly, meaning they cannot perform more
complex cleanup work. If they were in the middle of I/O, for instance,
only the data that already reached the Kernel is written to disk, and
data corruption due to unfinished writes can therefore still occur.
- No file systems are unmounted, meaning that any important unmount work
will never happen. This is important for e.g. Ext2, which has
facilites for detecting improper unmounts (see superblock's s_state
variable) and therefore requires a proper unmount to be performed.
This was also the starting point for this PR, since I wanted to
introduce basic Ext2 file system checking and unmounting.
- No hardware is properly shut down beyond what the system firmware does
on its own.
- Shutdown is performed within the write() call that asked the Kernel to
change its power state. If the shutdown procedure takes longer (i.e.
when it's done properly), this blocks the process causing the shutdown
and prevents any potentially-useful interactions between Kernel and
userland during shutdown.
In essence, current shutdown is a glorified system crash with minimal
file system cleanliness guarantees.
Therefore, this commit is the first step in improving our shutdown
procedure. The new shutdown flow is now as follows:
- From the write() call to the power state SysFS node, a new task is
started, the Power State Switch Task. Its only purpose is to change
the operating system's power state. This task takes over shutdown and
reboot duties, although reboot is not modified in this commit.
- The Power State Switch Task assumes that userland has performed all
shutdown duties it can perform on its own. In particular, it assumes
that all kinds of clean process shutdown have been done, and remaining
processes can be hard-killed without consequence. This is an important
separation of concerns: While this commit does not modify userland, in
the future SystemServer will be responsible for performing proper
shutdown of user processes, including timeouts for stubborn processes
etc.
- As mentioned above, the task hard-kills remaining user processes.
- The task hard-kills all Kernel processes except itself and the
Finalizer Task. Since Kernel processes can delay their own shutdown
indefinitely if they want to, they have plenty opportunity to perform
proper shutdown if necessary. This may become a problem with
non-cooperative Kernel tasks, but as seen two commits earlier, for now
all tasks will cooperate within a few seconds.
- The task waits for the Finalizer Task to clean up all processes.
- The task hard-kills and finalizes the Finalizer Task itself, meaning
that it now is the only remaining process in the system.
- The task syncs and locks all file systems, and then unmounts them. Due
to an unknown refcount bug we currently cannot unmount the root file
system; therefore the task is able to abort the clean unmount if
necessary.
- The task performs platform-dependent hardware shutdown as before.
This commit has multiple remaining issues (or exposed existing ones)
which will need to be addressed in the future but are out of scope for
now:
- Unmounting the root filesystem is impossible due to remaining
references to the inodes /home and /home/anon. I investigated this
very heavily and could not find whoever is holding the last two
references.
- Userland cannot perform proper cleanup, since the Kernel's power state
variable is accessed directly by tools instead of a proper userland
shutdown procedure directed by SystemServer.
The recently introduced Firmware/PowerState procedures are removed
again, since all of the architecture-independent code can live in the
power state switch task. The architecture-specific code is kept,
however.