We now talk to the lookup server over a local socket and it does the lookup
on our behalf. Including some retry logic, which is nice, because it seems
like DNS requests disappear in the ether pretty damn often where I am.
While working on the ELF loader I was trying to keep binaries as simple as
possible so I could understand them easily. Now that the ELF loader is mature
and working fine, we can move closer towards ld defaults.
It automagically computes %CPU usage based on the number of times a process
has been scheduled between samples. The colonel task is used as idle timer.
This is pretty cool. :^)
Only raw octal modes are supported right now.
This patch also changes mode_t from 32-bit to 16-bit to match the on-disk
type used by Ext2FS.
I also ran into EPERM being errno=0 which was confusing, so I inserted an
ESUCCESS in its place.
It's really only supported in Ext2FS since SynthFS doesn't really want you
mucking around with its files. This is pretty neat though :^)
I ran into some trouble with HashMap while working on this but opted to work
around it and leave that for a separate investigation.
This patch adds most of the plumbing for working file deletion in Ext2FS.
Directory entries are removed and inode link counts updated.
We don't yet update the inode or block bitmaps, I will do that separately.
It walks all the live Inode objects and flushes pending metadata changes
wherever needed.
This could be optimized by keeping a separate list of dirty Inodes,
but let's not get ahead of ourselves.
This synchronous approach to inodes is silly, obviously. I need to rework
it so that the in-memory CoreInode object is the canonical inode, and then
we just need a sync() that flushes pending changes to disk.
Processes are either alive (with many substates), dead or forgiven.
A dead process is forgiven when the parent waitpid()s on it.
Dead orphans are also forgiven.
There's a lot of work to be done around this.
This is quite cool! The syscall entry point plumbs the register dump
down to sys$fork(), which uses it to set up the child process's TSS
in order to resume execution right after the int 0x80 fork() call. :^)
This works pretty well, although there is some problem with the kernel
alias mappings used to clone the parent process's regions. If I disable
the MM::release_page_directory() code, there's no problem. Probably there's
a premature freeing of a physical page somehow.
This shows some info about the MM. Right now it's just the zone count
and the number of free physical pages. Lots more can be added.
Also added "exit" to sh so we can nest shells and exit from them.
I also noticed that we were leaking all the physical pages, so fixed that.
This took me a couple hours. :^)
The ELF loading code now allocates a single region for the entire
file and creates virtual memory mappings for the sections as needed.
Very nice!