Previously, we were sending Buffers to the server whenever we had new
audio data for it. This meant that for every audio enqueue action, we
needed to create a new shared memory anonymous buffer, send that
buffer's file descriptor over IPC (+recfd on the other side) and then
map the buffer into the audio server's memory to be able to play it.
This was fine for sending large chunks of audio data, like when playing
existing audio files. However, in the future we want to move to
real-time audio in some applications like Piano. This means that the
size of buffers that are sent need to be very small, as just the size of
a buffer itself is part of the audio latency. If we were to try
real-time audio with the existing system, we would run into problems
really quickly. Dealing with a continuous stream of new anonymous files
like the current audio system is rather expensive, as we need Kernel
help in multiple places. Additionally, every enqueue incurs an IPC call,
which are not optimized for >1000 calls/second (which would be needed
for real-time audio with buffer sizes of ~40 samples). So a fundamental
change in how we handle audio sending in userspace is necessary.
This commit moves the audio sending system onto a shared single producer
circular queue (SSPCQ) (introduced with one of the previous commits).
This queue is intended to live in shared memory and be accessed by
multiple processes at the same time. It was specifically written to
support the audio sending case, so e.g. it only supports a single
producer (the audio client). Now, audio sending follows these general
steps:
- The audio client connects to the audio server.
- The audio client creates a SSPCQ in shared memory.
- The audio client sends the SSPCQ's file descriptor to the audio server
with the set_buffer() IPC call.
- The audio server receives the SSPCQ and maps it.
- The audio client signals start of playback with start_playback().
- At the same time:
- The audio client writes its audio data into the shared-memory queue.
- The audio server reads audio data from the shared-memory queue(s).
Both sides have additional before-queue/after-queue buffers, depending
on the exact application.
- Pausing playback is just an IPC call, nothing happens to the buffer
except that the server stops reading from it until playback is
resumed.
- Muting has nothing to do with whether audio data is read or not.
- When the connection closes, the queues are unmapped on both sides.
This should already improve audio playback performance in a bunch of
places.
Implementation & commit notes:
- Audio loaders don't create LegacyBuffers anymore. LegacyBuffer is kept
for WavLoader, see previous commit message.
- Most intra-process audio data passing is done with FixedArray<Sample>
or Vector<Sample>.
- Improvements to most audio-enqueuing applications. (If necessary I can
try to extract some of the aplay improvements.)
- New APIs on LibAudio/ClientConnection which allows non-realtime
applications to enqueue audio in big chunks like before.
- Removal of status APIs from the audio server connection for
information that can be directly obtained from the shared queue.
- Split the pause playback API into two APIs with more intuitive names.
I know this is a large commit, and you can kinda tell from the commit
message. It's basically impossible to break this up without hacks, so
please forgive me. These are some of the best changes to the audio
subsystem and I hope that that makes up for this :yaktangle: commit.
:yakring:
Since VM::exception() no longer exists this is now useless. All of these
calls to clear_exception were just to clear the VM state after some
(potentially) failed evaluation and did not use the exception itself.
This also refactors interpreter creation to follow
InitializeHostDefinedRealm, but I couldn't fit it in the title :^)
This allows us to follow the spec much more closely rather than being
completely ad-hoc with just the parse node instead of having all the
surrounding data such as the realm of the parse node.
The interpreter creation refactor creates the global execution context
once and doesn't take it off the stack. This allows LibWeb to take the
global execution context and manually handle it, following the HTML
spec. The HTML spec calls this the "realm execution context" of the
environment settings object.
It also allows us to specify the globalThis type, as it can be
different from the global object type. For example, on the web, Window
global objects use a WindowProxy global this value to enforce the same
origin policy on operations like [[GetOwnProperty]].
Finally, it allows us to directly call Program::execute in perform_eval
and perform_shadow_realm_eval as this moves
global_declaration_instantiation into Interpreter::run
(ScriptEvaluation) as per the spec.
Note that this doesn't evalulate Source Text Modules yet or refactor
the bytecode interpreter, that's work for future us :^)
This patch was originally build by Luke for the environment settings
object change but was also needed for modules. So I (davidot) have
modified it with the new completion changes and setup for that.
Co-authored-by: davidot <davidot@serenityos.org>
Instead of making it a void function, checking for an exception, and
then receiving the relevant result via VM::last_value(), we can
consolidate all of this by using completions.
This allows us to remove more uses of VM::exception(), and all uses of
VM::last_value().
Previously, a libc-like out-of-line error information was used in the
loader and its plugins. Now, all functions that may fail to do their job
return some sort of Result. The universally-used error type ist the new
LoaderError, which can contain information about the general error
category (such as file format, I/O, unimplemented features), an error
description, and location information, such as file index or sample
index.
Additionally, the loader plugins try to do as little work as possible in
their constructors. Right after being constructed, a user should call
initialize() and check the errors returned from there. (This is done
transparently by Loader itself.) If a constructor caused an error, the
call to initialize should check and return it immediately.
This opportunity was used to rework a lot of the internal error
propagation in both loader classes, especially FlacLoader. Therefore, a
couple of other refactorings may have sneaked in as well.
The adoption of LibAudio users is minimal. Piano's adoption is not
important, as the code will receive major refactoring in the near future
anyways. SoundPlayer's adoption is also less important, as changes to
refactor it are in the works as well. aplay's adoption is the best and
may serve as an example for other users. It also includes new buffering
behavior.
Buffer also gets some attention, making it OOM-safe and thereby also
propagating its errors to the user.
The old versions were renamed to JS_DECLARE_OLD_NATIVE_FUNCTION and
JS_DEFINE_OLD_NATIVE_FUNCTION, and will be eventually removed once all
native functions were converted to the new format.
Meta/Lagom/ReadMe.md never had any other name; not sure how that typo
happened.
The link to the non-existent directory is especially vexing because the
text goes on to explain that we don't want such a directory to exist.
Found by running markdown-checker, and 'wget'ing all external links.
Split the Lagom build into shared libraries to match the Serenity build.
This reduces the cognitive load when trying to edit the Lagom CMakeLists
significantly. It also reduces the amount of source files that must be
compiled to run each test or host program significantly.
Also re-organize all the build rules into sections. And reorganize the
CMakeLists file in general.
LibTTF has a concrete dependency on LibGfx for things like Gfx::Bitmap,
and LibGfx has a concrete dependency in the TTF::Font class in
Gfx::FontDatabase. This circular dependency works fine for Serenity and
Lagom Linux builds of the two libraries. It also works fine for static
library builds on Lagom macOS builds.
However, future changes will make Lagom use shared libraries, and
circular library dependencies are not tolerated in macOS.
These are usually incorrect, and people sometimes forget to add the
correct values as a result of them being optional, so they should just
be specified explicitly.
This removes all usages of the non-standard define_property helper
method and replaces all it's usages with the specification required
alternative or with define_direct_property where appropriate.
All GUI applications currently load all TTF fonts on startup
(to populate the Gfx::FontDatabase. This could probably be smarter.)
Before this patch, everyone would open the files and read them into
heap-allocated storage. Now we simply mmap() them instead. :^)
Previously, AK::Function would accept _any_ callable type, and try to
call it when called, first with the given set of arguments, then with
zero arguments, and if all of those failed, it would simply not call the
function and **return a value-constructed Out type**.
This lead to many, many, many hard to debug situations when someone
forgot a `const` in their lambda argument types, and many cases of
people taking zero arguments in their lambdas to ignore them.
This commit reworks the Function interface to not include any such
surprising behaviour, if your function instance is not callable with
the declared argument set of the Function, it can simply not be
assigned to that Function instance, end of story.
Previously ByteBuffer::grow() behaved like Vector<T>::resize().
However the function name was somewhat ambiguous - and so this patch
updates ByteBuffer to behave more like Vector<T> by replacing grow()
with resize() and adding an ensure_capacity() method.
This also lets the user change the buffer's capacity without affecting
the size which was not previously possible.
Additionally this patch makes the capacity() method public (again).