New serenity_app() targets can be defined which allows application
icons to be emedded directly into the executable. The embedded
icons will then be used when creating an icon for that file in
LibGUI.
Problem:
- `(void)` simply casts the expression to void. This is understood to
indicate that it is ignored, but this is really a compiler trick to
get the compiler to not generate a warning.
Solution:
- Use the `[[maybe_unused]]` attribute to indicate the value is unused.
Note:
- Functions taking a `(void)` argument list have also been changed to
`()` because this is not needed and shows up in the same grep
command.
This patch replaces the UI-from-JSON mechanism with a more
human-friendly DSL.
The current implementation simply converts the GML into a JSON object
that can be consumed by GUI::Widget::load_from_json(). The parser is
not very helpful if you make a mistake.
The language offers a very simple way to instantiate any registered
Core::Object class by simply saying @ClassName
@GUI::Label {
text: "Hello friends!"
tooltip: ":^)"
}
Layouts are Core::Objects and can be assigned to the "layout" property:
@GUI::Widget {
layout: @GUI::VerticalBoxLayout {
spacing: 2
margins: [8, 8, 8, 8]
}
}
And finally, child objects are simply nested within their parent:
@GUI::Widget {
layout: @GUI::HorizontalBoxLayout {
}
@GUI::Button {
text: "OK"
}
@GUI::Button {
text: "Cancel"
}
}
This feels a *lot* more pleasant to write than the JSON we had. The fact
that no new code was being written with the JSON mechanism was pretty
telling, so let's approach this with developer convenience in mind. :^)
There are cases where Lagom will build with GCC but not Clang.
This often goes unnoticed for a while as we don't often build with
Clang.
However, this is now important to test in CI because of the
OSS-Fuzz integration.
Note that this only tests the build, it does not run any tests.
Note that it also only builds LagomCore, Lagom and the fuzzers.
It does not build the other programs that use Lagom.
We added OSS-Fuzz integration in #4154, but documentation about it
is spread across several pull requests, IRC, and issues. Let's collect
the important bits in the ReadMe.
This commit is a mix of several commits, squashed into one because the
commits before 'Move regex to own Library and fix all the broken stuff'
were not fixable in any elegant way.
The commits are listed below for "historical" purposes:
- AK: Add options/flags and Errors for regular expressions
Flags can be provided for any possible flavour by adding a new scoped enum.
Handling of flags is done by templated Options class and the overloaded
'|' and '&' operators.
- AK: Add Lexer for regular expressions
The lexer parses the input and extracts tokens needed to parse a regular
expression.
- AK: Add regex Parser and PosixExtendedParser
This patchset adds a abstract parser class that can be derived to implement
different parsers. A parser produces bytecode to be executed within the
regex matcher.
- AK: Add regex matcher
This patchset adds an regex matcher based on the principles of the T-REX VM.
The bytecode pruduced by the respective Parser is put into the matcher and
the VM will recursively execute the bytecode according to the available OpCodes.
Possible improvement: the recursion could be replaced by multi threading capabilities.
To match a Regular expression, e.g. for the Posix standard regular expression matcher
use the following API:
```
Pattern<PosixExtendedParser> pattern("^.*$");
auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle
EXPECT(result.count == 1);
EXPECT(result.matches.at(0).view.starts_with("Well"));
EXPECT(result.matches.at(0).view.end() == "!");
result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line
EXPECT(result.count == 2);
EXPECT(result.matches.at(0).view == "Well, hello friends!");
EXPECT(result.matches.at(1).view == "Hello World!");
EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources.
```
- AK: Rework regex to work with opcodes objects
This patchsets reworks the matcher to work on a more structured base.
For that an abstract OpCode class and derived classes for the specific
OpCodes have been added. The respective opcode logic is contained in
each respective execute() method.
- AK: Add benchmark for regex
- AK: Some optimization in regex for runtime and memory
- LibRegex: Move regex to own Library and fix all the broken stuff
Now regex works again and grep utility is also in place for testing.
This commit also fixes the use of regex.h in C by making `regex_t`
an opaque (-ish) type, which makes its behaviour consistent between
C and C++ compilers.
Previously, <regex.h> would've blown C compilers up, and even if it
didn't, would've caused a leak in C code, and not in C++ code (due to
the existence of `OwnPtr` inside the struct).
To make this whole ordeal easier to deal with (for now), this pulls the
definitions of `reg*()` into LibRegex.
pros:
- The circular dependency between LibC and LibRegex is broken
- Eaiser to test (without accidentally pulling in the host's libc!)
cons:
- Using any of the regex.h functions will require the user to link -lregex
- The symbols will be missing from libc, which will be a big surprise
down the line (especially with shared libs).
Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
This was broken with the JS::Parser::Error position changes, but I don't
actually see a reason to do anything with the parser errors here, so
let's remove it and consider simply not crashing a success. :^)
It's a thin userland wrapper around adjtime(2). It can be used
to view current pending time adjustments, and root can use it to
smoothly adjust the system time.
As far as I can tell, other systems don't have a userland utility
for this, but it seems useful. Useful enough that I'm adding it to
the lagom build so I can use it on my linux box too :)