We don't create a ChromeProcess in headless-browser, so it is currently
not increasing it's open file limit. This is causing crashes on macOS,
which has a very low default limit.
The main motivator here was noticing that --disable-sql-database did not
work with AppKit. Rather than re-implementing this there, move ownership
of these classes to WebView::Application, so that each UI does not need
to individually worry about it.
Currently, if we want to add a new e.g. WebContent command line option,
we have to add it to all of Qt, AppKit, and headless-browser. (Or worse,
we only add it to one of these, and we have feature disparity).
To prevent this, this moves command line flags to WebView::Application.
The flags are assigned to ChromeOptions and WebContentOptions structs.
Each chrome can still add its platform-specific options; for example,
the Qt chrome has a flag to enable Qt networking.
There should be no behavior change here, other than that AppKit will now
support command line flags that were previously only supported by Qt.
The default limit (at least on Linux) causes us to run out of file
descriptors at around 15 tabs. Increase this limit to 8k. This is a
rather arbitrary number, but matches the limit set by Chrome.
Skia painter is visibly faster than LibGfx painter and has more complete
CSS transforms support. With this change:
- On Linux, it will try to use Vulkan-backend with fallback to
CPU-backend
- On macOS it will try to use Metal-backend with fallback to
CPU-backend
- headless-browser always runs with CPU-backend in layout mode
GPU painter that uses AccelGfx is slower and way less complete compared
to both default Gfx::Painter and Skia painter. It does not make much
sense to keep it, considering Skia painter already uses Metal backend on
macOS by default and there is an option to enable GPU-accelerated
backend on linux.
This large commit also refactors LibWebView's process handling to use
a top-level Application class that uses a new WebView::Process class to
encapsulate the IPC-centric nature of each helper process.
This is the same behavior as RequestServer, with the added benefit that
we know how to gracefully reconnect ImageDecoder to all WebContent
processes on restart.
Using mmap-allocated memory for backing stores does not allow us to
benefit from using GPU-accelerated painting, because all the performance
increase we get is mostly negated by reading the GPU-allocated texture
back into RAM, so it can be shared with the browser process.
With IOSurface, we get a framebuffer that is both shareable between
processes and can be used as underlying memory for an OpenGL/Metal
texture.
This change does not yet benefit from using IOSurface and merely wraps
them into Gfx::Bitmap to be used by the CPU painter.
This patch adds a simple in-memory HTTP cache to each WebContent
process.
It's currently off by default (turn it on with --enable-http-cache)
since the validation logic is lacking and incomplete.
This makes WebView::Database wrap around sqlite3 instead of LibSQL. The
effect on outside callers is pretty minimal. The main consequences are:
1. We must ensure the Cookie table exists before preparing any SQL
statements involving that table.
2. We can use an INSERT OR REPLACE statement instead of separate INSERT
and UPDATE statements.
This really only affects headless-browser when it is linked with Qt. In
that case, it currently uses Qt networking by default and does not have
a flag to use RequestServer instead. Change the default to use RS so it
can undergo sanitized testing in CI.
It previously resided in LibWebView to hide the details of launching a
singleton process. That functionality now lives in LibCore. By moving
this to Ladybird, we will be able to register the process with the task
manager.
When running with --log-all-js-exceptions, we will print the message
and backtrace for every single JS exception that is thrown, not just
the ones nobody caught.
This can sometimes be very helpful in debugging sites that swallow
important exceptions.
This URL library ends up being a relatively fundamental base library of
the system, as LibCore depends on LibURL.
This change has two main benefits:
* Moving AK back more towards being an agnostic library that can
be used between the kernel and userspace. URL has never really fit
that description - and is not used in the kernel.
* URL _should_ depend on LibUnicode, as it needs punnycode support.
However, it's not really possible to do this inside of AK as it can't
depend on any external library. This change brings us a little closer
to being able to do that, but unfortunately we aren't there quite
yet, as the code generators depend on LibCore.
It is currently a bit messy to pass these options along from main() to
where WebContent is actually launched. If a new flag were to be added,
there are a couple dozen files that need to be updated to pass that flag
along. With this change, the flag can just be added to the struct, set
in main(), and handled in launch_web_content_process().
We call [NSApp activateIgnoringOtherApps:YES] to ensure the application
is brought into view and focused when launched from a terminal. But in
a macOS environment, we're better off using the `open` command to launch
the application (in which case, it does take foreground focus).
These classes are used as-is in all chromes. Move them to LibWebView so
that non-Serenity chromes don't have to awkwardly reach into its headers
and sources.
This adds an alternative Ladybird chrome for macOS using the AppKit
framework. Just about everything needed for normal web browsing has
been implemented. This includes:
* Tabbed, scrollable navigation
* History navigation (back, forward, reload)
* Keyboard / mouse events
* Favicons
* Context menus
* Cookies
* Dialogs (alert, confirm, prompt)
* WebDriver support
This does not include debugging tools like the JavaScript console and
inspector, nor theme support.
The Qt chrome is still used by default. To use the AppKit chrome, set
the ENABLE_QT CMake option to OFF.