After splitting a node, the new node was written to the same pointer as
the current node - probably a copy / paste error. This new code requires
a `.pointer() -> u32` to exist on the object to be serialized,
preventing this issue from happening again.
Fixes#15844.
The Demuxer class was changed to return errors for more functions so
that all of the underlying reading can be done lazily. Other than that,
the demuxer interface is unchanged, and only the underlying reader was
modified.
The MatroskaDocument class is no more, and MatroskaReader's getter
functions replace it. Every MatroskaReader getter beyond the Segment
element's position is parsed lazily from the file as needed. This means
that all getter functions can return DecoderErrors which must be
handled by callers.
Matroska::Reader functions now return DecoderErrorOr instead of values
being declared Optional. Useful errors can be handled by the users of
the parser, similarly to the VP9 decoder. A lot of the error checking
in the reader is a lot cleaner thanks to this change, since all reads
can be range checked in Streamer::read_octet() now.
Most functions for the Streamer class are now also out-of-line in
Reader.cpp now instead of residing in the header.
As new demuxers are added, this will get quite full of files, so it'll
be good to have a separate folder for these.
To avoid too many chained namespaces, the Containers subdirectory is
not also a namespace, but the Matroska folder is for the sake of
separating the multiple classes for parsed information entering the
Video namespace.
These functions are now implemented in terms of getpwent_r() which
allows us to remove two FIXMEs about global variable shenanigans.
I'm also adding tests for both APIs. :^)
This means that rather than this:
```
AK_TYPEDEF_DISTINCT_NUMERIC_GENERAL(u64, true, true, false, false,
false, true, FunctionAddress);
```
We now have this:
```
AK_TYPEDEF_DISTINCT_NUMERIC_GENERAL(u64, FunctionAddress, Arithmetic,
Comparison, Increment);
```
Which is a lot more readable. :^)
Co-authored-by: Ali Mohammad Pur <mpfard@serenityos.org>
When calling clear_with_capacity on an empty HashTable/HashMap, a null
deref would occur when trying to memset() m_buckets. Checking that it
has capacity before clearing fixes the issue.
Currently, the floating point to string conversion is implemented
several times across the codebase. This commit provides a pretty
low-level function to unify all of such conversions. It converts the
given double to a fixed point decimal satisfying a few correctness
criteria.
Otherwise, we end up propagating those dependencies into targets that
link against that library, which creates unnecessary link-time
dependencies.
Also included are changes to readd now missing dependencies to tools
that actually need them.
Even though the toolchain implicitly links against -lc, it does not know
where it should get LibC from except for the sysroot. In the case of
Clang this causes it to pick up the LibC stub instead, which might be
slightly outdated and feature missing symbols.
This is currently not an issue that manifests because we pass through
the dependency on LibC and other libraries by accident, which causes
CMake to link against the LibC target (instead of just the library),
and thus points the linker at the build output directory.
Since we are looking to fix that in the upcoming commits, let's make
sure that everything will still be able to find the proper LibC first.
The class is virtual and has one subclass, SubsampledYUVFrame, which
is used by the VP9 decoder to return a single frame. The
output_to_bitmap(Bitmap&) function can be used to set pixels on an
existing bitmap of the correct size to the RGB values that
should be displayed. The to_bitmap() function will allocate a new bitmap
and fill it using output_to_bitmap.
This new class also implements bilinear scaling of the subsampled U and
V planes so that subsampled videos' colors will appear smoother.
Because we still support u64 and i64 (on top of i32 and u32) we do still
have to parse the number ourself first. Then if we determine that the
number is a floating point or is outside of the range of i64 and u64 we
fallback and parse it as a double.
Before JsonParser had ifdefs guarding the double computation, but it
just build when we error on ifdef KERNEL so JsonParser is no longer
usable in the Kernel. This can be remedied fairly easily but since
it is not needed we #error on that for now.
Similar to decimal floating point parsing the current strtod hex float
parsing gives a lot of incorrect results. We can use a similar technique
as with decimal parsing however hex floats are much simpler as we don't
need to scale with a power of 5.
For hex floats we just provide the parse_first_hexfloat API as there is
currently no need for a parse_hexfloat_completely API.
Again the accepted input for parse_first_hexfloat is very lenient and
any validation should be done before calling this method.
This is based on the paper by Daniel Lemire called
"Number parsing at a Gigabyte per second", currently available at
https://arxiv.org/abs/2101.11408
An implementation can be found at
https://github.com/fastfloat/fast_float
To support both strtod like methods and String::to_double we have two
different APIs. The parse_first_floating_point gives back both the
result, next character to read and the error/out of range status.
Out of range here means we rounded to infinity 0.
The other API, parse_floating_point_completely, will return a floating
point only if the given character range contains just the floating point
and nothing else. This can be much faster as we can skip actually
computing the value if we notice we did not parse the whole range.
Both of these APIs support a very lenient format to be usable in as many
places as possible. Also it does not check for "named" values like
"nan", "inf", "NAN" etc. Because this can be different for every usage.
For integers and small values this new method is not faster and often
even a tiny bit slower than the current strtod implementation. However
the strtod implementation is wrong for a lot of values and has a much
less predictable running time.
For correctness this method was tested against known string -> double
datasets from https://github.com/nigeltao/parse-number-fxx-test-data
This method gives 100% accuracy.
The old strtod gave an incorrect value in over 50% of the numbers
tested.
By appending individual bytes as code points, we were "breaking apart"
multi-byte UTF-8 code points. This now behaves the same way as the
invert_case() helper in StringUtils.
Commit c3fd455 changed LibTimeZone to fall back to the system time zone
when we fail to parse the TZ environment variable. This behavior differs
from both our LibC and glibc; they abort parsing and default to UTC.
This changes LibTimeZone to behave the same way to avoid a very awkward
situation where some parts of the codebase thinks the timezone is UTC,
and others think the timezone is whatever /etc/timezone indicates.
According to the spec, pointers to client data need to be dereferenced
immediately when adding calls such as `glDrawElements` or
`glArrayElement` to a display list. We were trying to support display
lists for these calls but since they only invoke _other_ calls that also
support display lists, we can simply defer the display list
functionality to them.
This fixes the rendering of the ClassiCube port by cflip.
Instead of just having a giant KBuffer that is not resizeable easily, we
use multiple AnonymousVMObjects in one Vector to store them.
The idea is to not have to do giant memcpy or memset each time we need
to allocate or de-allocate memory for TmpFS inodes, but instead, we can
allocate only the desired block range when trying to write to it.
Therefore, it is also possible to have data holes in the inode content
in case of skipping an entire set of one data block or more when writing
to the inode content, thus, making memory usage much more efficient.
To ensure we don't run out of virtual memory range, don't allocate a
Region in advance to each TmpFSInode, but instead try to allocate a
Region on IO operation, and then use that Region to map the VMObjects
in IO loop.
Currently, the Value class is essentially a "pImpl" wrapper around the
ValueImpl hierarchy of classes. This is a bit difficult to follow and
reason about, as methods jump between the Value class and its impl
classes.
This changes the Variant held by Value to instead store the specified
types (String, int, etc.) directly. In doing so, the ValueImpl classes
are removed, and all methods are now just concise Variant visitors.
As part of this rewrite, support for the "array" type is dropped (or
rather, just not re-implemented) as it was unused. If it's needed in the
future, support can be re-added.
This does retain the ability for non-NULL types to store NULL values
(i.e. an empty Optional). I tried dropping this support as well, but it
is depended upon by the on-disk storage classes in non-trivial ways.
Even though this almost certainly wouldn't run properly even if we had
a working kernel for AARCH64 this at least lets us build all the
userland binaries.
The only complication here is that Core::Stream::File is not RefCounted
meaning we have to use OwnPtr instead of RefPtr.
Unfortunately we cannot propagate errors as some errors must be caught
and dealt with as the runner can do anything (like stop at any moment
or close pipes).
Without this the runner is waiting for new tests which will never come
and test-test262 is waiting for output which never comes since the
runner is blocked.
Also finish off a comment, and make the variables follow serenity style.
Previously, some integer overflows and truncations were causing parsing
errors for 4K videos, with those fixed it can fully decode 8K video.
This adds a test to ensure that 4K video will continue to be decoded.
Note: There seems to be unexpectedly high memory usage while decoding
them, causing 8K video to require more than a gigabyte of RAM. (!!!)
The relevant RFC section from
https://www.rfc-editor.org/rfc/rfc7932#section-9.2
MSKIPBYTES * 8 bits: MSKIPLEN - 1, where MSKIPLEN is
the number of metadata bytes; this field is
only present if MSKIPBYTES is positive;
otherwise, MSKIPLEN is 0 (if MSKIPBYTES is
greater than 1, and the last byte is all
zeros, then the stream should be rejected as
invalid)
So when skip_bytes is zero we need to break and
re-align bytes.
Added the relevant test case that demonstrates this from:
https://github.com/google/brotli/blob/master/tests/testdata/x.compressed