It's not safe to use a raw pointer for Process::m_tty. A pseudoterminal
pair will disappear when file descriptors are closed, and we'd end up
looking dangly. Just use a RefPtr.
Scheduling priority is now set at the thread level instead of at the
process level.
This is a step towards allowing processes to set different priorities
for threads. There's no userspace API for that yet, since only the main
thread's priority is affected by sched_setparam().
Oops, we were creating these and then throwing them away. They will
get instantiated a bit later, when we bring up the mounts in /etc/fstab
from userspace.
This allows us to get rid of all the custom 64-bit division helpers.
I wanted to do this ages ago but couldn't get it working. Turns out it
was unstable due to libgcc using the regular ABI and the kernel being
built with -mregparm=3.
Now that we build the kernel with regular calls, we can just link with
libgcc and get this stuff for free. :^)
Files opened with O_DIRECT will now bypass the disk cache in read/write
operations (though metadata operations will still hit the disk cache.)
This will allow us to test actual disk performance instead of testing
disk *cache* performance, if that's what we want. :^)
There's room for improvment here, we're very aggressively flushing any
dirty cache entries for the specific block before reading/writing that
block. This is done by walking the entire cache, which may be slow.
This helps aid debugging of issues such as #695, where the bridge chip
that controls IDE is NOT a PIIX3/4 compatible controller. Instead of
just hanging when the DMA registers can't be accessed, the system will
inform the user that no valid IDE controller has been found. In this
case, the system will not attempt to initialise the DMA registers and
instead use PIO mode.
Don't keep Inodes around in memory forever after we've interacted with
them once. This is a slight performance pessimization when accessing
the same file repeatedly, but closing it for a while in between.
Longer term we should find a way to keep a limited number of unused
Inodes cached, whichever ones we think are likely to be used again.
Move the kernel image to the 1 MB physical mark. This prevents it from
colliding with stuff like the VGA memory. This was causing us to end
up with the BIOS screen contents sneaking into kernel memory sometimes.
This patch also bumps the kmalloc heap size from 1 MB to 3 MB. It's not
the perfect permanent solution (obviously) but it should get the OOM
monkey off our backs for a while.
dispatch_signal() expected a RegisterDump on the kernel stack. However
in certain cases, like just after a clone, this was not the case and
dispatch_signal() would instead write to an incorrect user stack pointer.
We now use the threads TSS in situations where the RegisterDump may not
be valid, fixing the issue.
After the page fault handler has found the region in which the fault
occurred, do the rest of the work in the region itself.
This patch also makes all fault types consistently crash the process
if a new page is needed but we're all out of pages.
Since the kernel page tables are shared between all processes, there's
no need to (implicitly) flush the TLB for them on every context switch.
Setting the G bit on kernel page tables allows the CPU to keep the
translation caches around.
This patch changes the parameter to Region::map() to be a PageDirectory
since that matches how we think about the memory model:
Regions are views onto VMObjects, and are mapped into PageDirectories.
Each Process has a PageDirectory. The kernel also has a PageDirectory.
Since a Region is merely a "window" onto a VMObject, it can both begin
and end at a distance from the VMObject's boundaries.
Therefore, we should always be computing indices into a VMObject's
physical page array by adding the Region's "first_page_index()".
There was a whole bunch of code that forgot to do that. This fixes
many wrong behaviors for Regions that start part-way into a VMObject.
When creating a new directory, we set the initial size to 1 block.
This meant that we were allocating a block up front, but the Inode's
internal block list cache was not populated with this block.
This broke write_bytes() on a new directory, since it assumed that
the block list cache would be up to date if the call to write_bytes()
would not change the directory's size.
This patch fixes the issue in two ways: First, we cache the initial
block list created for new directories.
Second, we now repopulate the block list cache in write_bytes() if it
is empty when we get there. This is basically just a safety fallback
to avoid having this kind of bug in the future.
Ports/.port_include.sh, Toolchain/BuildIt.sh, Toolchain/UseIt.sh
have been left largely untouched due to use of Bash-exclusive
functions and variables such as $BASH_SOURCE, pushd and popd.
We can't be calling the virtual FS::flush_writes() in order to flush
the disk cache from within the disk cache, since an FS subclass may
try to do cache stuff in its flush_writes() implementation.
Instead, separate out the implementation of DiskBackedFS's flushing
logic into a flush_writes_impl() and call that from the cache code.