We currently spin the event loop to wait for the specified element to
become available. As we've seen with other endpoints, this can result
in dead locks if another web component also spins the event loop.
This patch makes the locator implementations asynchronous.
It's currently possible for window size/position updates to hang, as the
underlying IPCs are synchronous. This updates the WebDriver endpoint to
be async, to unblock the WebContent process while the update is ongoing.
The UI process is now responsible for informing WebContent when the
update is complete.
There was a timing issue here where WebDriver would dismiss a dialog,
and then invoke another endpoint before the dialog was actually closed.
This is because the dismissal first has to hop over to the UI process to
close the graphical dialog, which then asynchronously informs WebContent
of the result. It's not until WebContent receives that result that the
dialog is considered closed, thus those subsequent endpoints would abort
due a dialog being "open".
We now wait for dialogs to be fully closed before returning from the
dismissal endpoints.
Similar to commit c2cf65adac, we should
avoid spinning the event loop from the WebContent-side of the WebDriver
connection. This can result in deadlocks if another component in LibWeb
also spins the event loop.
The AO to await navigations has two event loop spinners - waiting for
the navigation to complete and for the document to reach the target
readiness state. We now use NavigationObserver and DocumentObserver to
be notified when these conditions are met. And we use the same async IPC
mechanism as script execution to notify the WebDriver process when all
conditions are met (or timed out).
This abstraction will help us to support multiple IPC transport
mechanisms going forward. For now, we only have a TransportSocket that
implements the same behavior we previously had, using Unix Sockets for
IPC.
Previously, tests would intermittently fail because the current session
wasn't yet aware of a newly created window handle.
Co-authored-by: Timothy Flynn <trflynn89@pm.me>
This reverts commit 556a0936dd.
This was causing a large slow down in WPT, and a crash on macOS during
session shutdown when running WebDriver manually.
Similar to script execution, this spins the WebDriver process until the
action is complete (rather than spinning the WebContent process, which
we've seen result in deadlocks).
After closing a window, it is the client's job to switch to another
window before executing any other command. Currently, we will crash if
that did not happen when we try to send an IPC to a window handle that
we no longer hold. This patch makes us return a "no such window" error
instead.
The exceptions to this new check are the "Switch to Window" and "Get
Window Handles" commands.
It's difficult to know what we need to implement if we silently ignore
these endpoints. Let's log the endpoints and their parameters, and clean
up the wall of FIXME comments to be easier to grok.
We currently spin the platform event loop while awaiting scripts to
complete. This causes WebContent to hang if another component is also
spinning the event loop. The particular example that instigated this
patch was the navigable's navigation loop (which spins until the fetch
process is complete), triggered by a form submission to an iframe.
So instead of spinning, we now return immediately from the script
executors, after setting up listeners for either the script's promise to
be resolved or for a timeout. The HTTP request to WebDriver must finish
synchronously though, so now the WebDriver process spins its event loop
until WebContent signals that the script completed. This should be ok -
the WebDriver process isn't expected to be doing anything else in the
meantime.
Also, as a consequence of these changes, we now actually handle time
outs. We were previously creating the timeout timer, but not starting
it.
Added the following Routes, IPC definitions, and boilerplates for the
missing endpoints:
- Switch To Frame
- Switch To Parent Frame
- Element Clear
- Element Send Keys
This URL library ends up being a relatively fundamental base library of
the system, as LibCore depends on LibURL.
This change has two main benefits:
* Moving AK back more towards being an agnostic library that can
be used between the kernel and userspace. URL has never really fit
that description - and is not used in the kernel.
* URL _should_ depend on LibUnicode, as it needs punnycode support.
However, it's not really possible to do this inside of AK as it can't
depend on any external library. This change brings us a little closer
to being able to do that, but unfortunately we aren't there quite
yet, as the code generators depend on LibCore.
`JsonValue::to_byte_string` has peculiar type-erasure semantics which is
not usually intended. Unfortunately, it also has a very stereotypical
name which does not warn about unexpected behavior. So let's prefix it
with `deprecated_` to make new code use `as_string` if it just wants to
get string value or `serialized<StringBuilder>` if it needs to do proper
serialization.
In a bunch of cases, this actually ends up simplifying the code as
to_number will handle something such as:
```
Optional<I> opt;
if constexpr (IsSigned<I>)
opt = view.to_int<I>();
else
opt = view.to_uint<I>();
```
For us.
The main goal here however is to have a single generic number conversion
API between all of the String classes.
This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).
This commit is auto-generated:
$ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
Meta Ports Ladybird Tests Kernel)
$ perl -pie 's/\bDeprecatedString\b/ByteString/g;
s/deprecated_string/byte_string/g' $xs
$ clang-format --style=file -i \
$(git diff --name-only | grep \.cpp\|\.h)
$ gn format $(git ls-files '*.gn' '*.gni')
We now create a WorkerAgent for the parent context, which is currently
only a Window. Note that Workers can have Workers per the spec.
The WorkerAgent spawns a WebWorker process to hold the actual
script execution of the Worker. This is modeled with the
DedicatedWorkerHost object in the WebWorker process.
A start_dedicated_worker IPC method in the WebWorker IPC creates the
WorkerHost object. Future different worker types may use different IPC
messages to create their WorkerHost instance.
This implementation cannot yet postMessage between the parent and the
child processes.
Co-Authored-By: Andreas Kling <kling@serenityos.org>
We already do this for headless-browser. There's no need to open any URL
other than about:blank when starting a WebDriver session. We should also
do this from WebDriver code, rather than in special logic in Browser's
main.cpp.
The previous iteration of this API was somewhat odd and rough in random
places, which degraded usability and made less than perfect sense.
This commit reworks the API to be a little closer to more
conventional promise APIs (a la javascript promises).
Also adds a test to ensure the class even works.
Previously it was possible to have following sequence of calls
while destroying a session:
1. `WebContentConnection::die()` calls `Client::close_session()`
2. `Client::close_session()` removes a session from active sessions
map which causes session destructor call.
3. Session destructor calls `Client::close_session()` to remove a
session from active sessions.
With `stop()` method inlined into destructor `close_session()` need
to be called just once while destroying a session.