The following KUBSAN crash on startup was reported on discord:
```
UHCI: Started
KUBSAN: reference binding to null pointer of type struct UHCIController
KUBSAN: at ../../Kernel/Devices/USB/UHCIController.cpp, line 67
```
After inspecting the code, it became clear that there's a window of time
where the kernel task which monitors the UHCI port can startup and start
executing before the UHCIController constructor completes. This leaves
the singleton pointing to nullptr, thus in the duration of this race
window the "UHCI port proc" thread will go an and de-reference the null
pointer when trying to read for status changes on the UHCI root ports.
Reported-by: @stelar7
Reported-by: @bcoles
Fixes: #6154
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
Helps with bare metal debugging, as we can't be sure our implementation
will work with a given machine.
As reported by someone on Discord, their machine hangs when we attempt
the dummy transfer.
This commit is very invasive, because Thread likes to take a pointer and write
to it. This means that translating between timespec/timeval/Time would have been
more difficult than just changing everything that hands a raw pointer to Thread,
in bulk.
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
We can now test a _very_ basic transaction via `do_debug_transfer()`.
This function merely attaches some TDs to the LSCTRL queue head
and points some input and output buffers. We then sense an interrupt
with USBSTS value of 1, meaning Interrupt On Completion
(of the transaction). At this point, the input buffer is filled with
some data.
According the USB spec/UHCI datasheet (as well as the Linux and
BSD source code), if we receive an IRQ and USBSTS is 0, then
the IRQ does not belong to us and we should immediately jump
out of the handler.
We can now read/write to the two root ports exposed to the
UHCI controller, and detect when a device is plugged in or
out via a kernel process that constantly scans the port
for any changes. This is very basic, but is a bit of fun to see
the kernel detecting hardware on the fly :^)
Implemented both Queue Heads and Transfer Descriptors. These
are required to actually perform USB transactions. The UHCI
driver sets up a pool of these that can be allocated when we
need them. It seems some drivers have these statically
allocated, so it might be worth looking into that, but
for now, the simple way seems to be to allocate them on
the fly as we need them, and then release them.
It seems that not setting the framelist address register
was causing the entire system to lock up as it generated an insane
interrupt storm in the IRQ handler for the UHCI controller.
We now allocate a 4KiB aligned page via
`MemoryManager::allocate_supervisor_physical_page()` and set every
value to 1. In effect, this creates a framelist with each entry
being a "TERMINATE" entry in which the controller stalls until its'
1mS time slice is up.
Some more registers have also been set for consistency, though it
seems like this don't need to be set explicitly in software.