SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
The previous implementation could allocate on insertion into the completed / pending
sub request vectors. There's no reason these can't be intrusive lists instead.
This is a very minor step towards improving the ability to handle OOM, as tracked by #6369
It might also help improve performance on the IO path in certain situations.
I'll benchmark that later.
Pressing this combo will dump a list of all threads and their state
to the debug console.
This might be useful to figure out why the system is not responding.
Helps with bare metal debugging, as we can't be sure our implementation
will work with a given machine.
As reported by someone on Discord, their machine hangs when we attempt
the dummy transfer.
The first one is for disabling the PS2 controller, the other one is for
disabling physical storage enumeration.
We can't be sure any machine will work with our implementation,
therefore this will help us to test more machines.
The end goal of this commit is to allow to boot on bare metal with no
PS/2 device connected to the system. It turned out that the original
code relied on the existence of the PS/2 keyboard, so VirtualConsole
called it even though ACPI indicated the there's no i8042 controller on
my real machine because I didn't plug any PS/2 device.
The code is much more flexible, so adding HID support for other type of
hardware (e.g. USB HID) could be much simpler.
Briefly describing the change, we have a new singleton called
HIDManagement, which is responsible to initialize the i8042 controller
if exists, and to enumerate its devices. I also abstracted a bit
things, so now every Human interface device is represented with the
HIDDevice class. Then, there are 2 types of it - the MouseDevice and
KeyboardDevice classes; both are responsible to handle the interface in
the DevFS.
PS2KeyboardDevice, PS2MouseDevice and VMWareMouseDevice classes are
responsible for handling the hardware-specific interface they are
assigned to. Therefore, they are inheriting from the IRQHandler class.
We can't use deferred functions for anything that may require preemption,
such as copying from/to user or accessing the disk. For those purposes
we should use a work queue, which is essentially a kernel thread that
may be preempted or blocked.
Alot of code is shared between i386/i686/x86 and x86_64
and a lot probably will be used for compatability modes.
So we start by moving the headers into one Directory.
We will probalby be able to move some cpp files aswell.
Previously all of the CommandLine parsing was spread out around the
Kernel. Instead move it all into the Kernel CommandLine class, and
expose a strongly typed API for querying the state of options.
This commit is very invasive, because Thread likes to take a pointer and write
to it. This means that translating between timespec/timeval/Time would have been
more difficult than just changing everything that hands a raw pointer to Thread,
in bulk.
This may seem like a no-op change, however it shrinks down the Kernel by a bit:
.text -432
.unmap_after_init -60
.data -480
.debug_info -673
.debug_aranges 8
.debug_ranges -232
.debug_line -558
.debug_str -308
.debug_frame -40
With '= default', the compiler can do more inlining, hence the savings.
I intentionally omitted some opportunities for '= default', because they
would increase the Kernel size.
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
There's no real system here, I just added it to various functions
that I don't believe we ever want to call after initialization
has finished.
With these changes, we're able to unmap 60 KiB of kernel text
after init. :^)
In preparation for marking BlockingResult [[nodiscard]], there are a few
places that perform infinite waits, which we never observe the result of
the wait. Instead of suppressing them, add an alternate function which
returns void when performing and infinite wait.
If we try to align a number above 0xfffff000 to the next multiple of
the page size (4 KiB), it would wrap around to 0. This is most likely
never what we want, so let's assert if that happens.
This patch adds Space, a class representing a process's address space.
- Each Process has a Space.
- The Space owns the PageDirectory and all Regions in the Process.
This allows us to reorganize sys$execve() so that it constructs and
populates a new Space fully before committing to it.
Previously, we would construct the new address space while still
running in the old one, and encountering an error meant we had to do
tedious and error-prone rollback.
Those problems are now gone, replaced by what's hopefully a set of much
smaller problems and missing cleanups. :^)
Because it was 'static const' and also shared with userland programs,
the default keymap was defined in multiple places. This commit should
save several kilobytes! :^)
In ab14b0ac64, mmap was changed so that
the size of the region is aligned before it was passed to the device
driver. The previous logic would assert when the framebuffer size was
not a multiple of the page size. I've also taken the liberty of
returning an error on mmap failure rather than asserting.
Instead of letting each File subclass do range allocation in their
mmap() override, do it up front in sys$mmap().
This makes us honor alignment requests for file-backed memory mappings
and simplifies the code somwhat.