This also sets the default callback to do what every non-Serenity
browser is doing, rather than copy-pasting this callback into every
implementation. The callback is still available for any platform which
might want to override the default behavior. For example, OOPWV now
overrides this callback to use FileSystemAccessClient.
Re-organize our helper files here a bit, to make a clearer distinction
between Qt-specific helpers and generic non-serenity helpers.
A future commit will move Lagom specific code from LibSQL to ladybird
as well, so that we can see about future generic apis for spawning
helper procesess.
WebView::ViewImplementation now remembers which JS interpreter it
started with, and uses the same setting if the WebContent process
crashes and we have to spawn a new one.
The inspector widget now has a new ARIA tab which displays an
individual element's ARIA properties and state. The view itself
is pretty basic for now, just being a table- there is definitely room
for some better UX here but it's enough for a first cut.
The data we want to send out of the WebContent process is identical for
audio and video elements. Rather than just duplicating all of this for
audio, generalize the names used for this IPC for all media elements.
This also encapsulates that data into a struct. This makes adding new
fields to be sent much easier (such as an upcoming field for muting the
element).
Serenity handles this in the SystemServer already, but the simplest
place to put this logic is the ViewImplementation base class.
This is trivial to see when running Ladybird without SERENTIY_SOURCE_DIR
set, or set improperly.
The goal here is to reduce the amount of WebContent client APIs that are
duplicated across every ViewImplementation. Across our three browsers,
we currently:
Ladybird - Mix some AK::Function callbacks and Qt signals to notify
tabs of WebContent events.
Browser - Use only AK::Function callbacks.
headless-browser - Drop most events on the floor.
Instead, let's only use AK::Function callbacks across all three browsers
to propagate events to tabs. This allows us to invoke those callbacks
directly from LibWebView instead of all three browsers needing to define
a trivial `if (callback) callback();` override of a LibWebView virtual
function. For headless-browser, we can simply not set these callbacks.
As a first pass, this only converts WebContent events that are trivial
to this approach. That is, events that were simply passed onto the tab
or handled without much fuss.
This is to match Browser, where ownership of all "subwidgets" is placed
on the tab as well. This further lets us align the web view callbacks to
match Browser's OOPWV as well, which will later let us move them into
the base LibWebView class.
The implementations of handle_web_content_process_crash and
take_screenshot are exactly the same across Browser and Ladybird. Let's
reduce some code duplication and move them to LibWebView.
This allows for the browser process to control the play/pause state,
whether we paint user agent controls on the video, and whether the video
loops when it finishes playing.
This just sets up the IPC to notify the browser process of context menu
requests on video elements. The IPC contains a few pieces of information
about the state of the video element.
This adds a -P option to run Ladybird under callgrind. It starts with
instrumentation disabled. To start capturing a profile (once Ladybird
has launched) run `callgrind_control -i on` and to stop it again run
`callgrind_control -i off`.
P.s. This is pretty much stolen from Andreas (and is based on the patch
everyone [that wants a profile] have been manually applying).
Add field for a handle that is going to be used by WebDriver to
identify top-level browsing contexts.
It is supposed to be populated by WebContent client during creation.
Co-authored-by: Timothy Flynn <trflynn89@pm.me>
Currently, on Serenity, we connect to WebDriver from the browser-side of
the WebContent connection for both Browser and headless-browser.
On Lagom, we connect from within the WebContent process itself, signaled
by a command line flag.
This patch changes Lagom browsers to connect to WebDriver the same way
that Serenity browsers do. This will ensure we can do other initializers
in the same order across all platforms and browsers.
LibGUI and WebDriver (read: JSON) API boundaries use DeprecatedString,
so that is as far as these changes can reach.
The one change which isn't just a DeprecatedString to String replacement
is handling the "null" prompt response. We previously checked for the
null DeprecatedString, whereas we now represent this as an empty
Optional<String>.
This starts moving code equally shared between the OOPWV and Ladybird
WebContentView implementations to WebView::ViewImplementation, beginning
with the client state.
This patch also stubs out notify_server_did_get_accessiblity_tree in
ladybird since ViewImplementation now has it. However, this feature
is still immature, so just stubbing out in ladybird for now. Once we
have more robust support in Serenity (namely ARIA properties/state
and accessible names and descriptions) we can port this
functionality over.
This fixes a few things I noticed whilst working on the inspector
for Ladybird.
1.
The computed and resolved values were being passed swapped around
from the inspect_dom_node() IPC call. I.e. computed values were
passed as resolved values and vice versa. This was then fixed by
swapping them again in the InspectorWidget (two errors canceled out).
2.
Resolved values were called "specified values" seemingly only in the
inspect_dom_node() IPC calls. This was a little confusing so I've
renamed them to back to "resolved values" for consistency.
3.
The inspector took and stored the DOM JSON strings unnecessarily,
all the models immediately parse the JSON and don't need the strings
to hang around.
Updating cookies through these hooks happens in one of two manners:
1. Through the Browser's storage inspector.
2. Through WebDriver's delete-cookies operation.
In (1), we should not restrict ourselves to being able to delete cookies
for the current page. For example, it's handy to open the inspector from
the welcome page and be able to delete cookies for any domain.
In (2), we already are only interacting with cookies that have been
matched against the document URL.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
Previously we labeled redirects as normal FrameLoader::Type::Navigation,
now we introduce a new FrameLoader::Type::Redirect and label redirects
with it. This will allow us to handle redirects in the browser
differently (such as for overwritting the latest history entry when a
redirect happens) :^)
Since 9e2bd9d261a8c0c1b5eeafde95ca310efc667204, the OOPWV has been
consuming all mouse and keyboard events, preventing action shortcuts
from working. So let's fix that. :^)
OOPWV now queues up input events, sending them one at a time to the
WebContent process and waiting for the new
`did_finish_handling_input_event(bool event_was_accepted) =|` IPC call
before sending the next one. If the event was not accepted, OOPWV
imitates the usual event bubbling: first passing the event to its
superclass, then to its parent widget, and finally propagating to any
Action shortcuts.
With this, shortcuts like Ctrl+I to open Browser's JS console work
again, except when a contenteditable field is selected. That's a
whole separate stack of yaks.
Co-authored-by: Zaggy1024 <zaggy1024@gmail.com>
The way in which dialogs should be handled is configurable by the driver
capabilities object, which we don't support yet. So this implements just
the default mode to dismiss the dialog and return an error if there is
one open.
In the OOPWV, this means we need to refer to the dialog after it has
been open, so we now hold a pointer to whatever dialog is open.
Currently, the WebContent process is completely blocked while waiting
for a response to a dialog request. This patch allows the IPC event loop
to continue executing while only blocking the HTML event loop.
This will allow other processes like WebDriver to continue to operate on
the WebContent process while a dialog is open.