This is pretty cool. :^)
GraphicsBitmaps are now mapped into both the server and the client address
space (usually at different addresses but that doesn't matter.)
Added a GUI syscall for getting a window's backing store, and another one
for invalidating a window so that the server redraws it.
Userspace programs can now open /dev/gui_events and read a stream of GUI_Event
structs one at a time.
I was stuck on a stupid problem where we'd reenter Scheduler::yield() due to
having one of the has_data_available_for_reading() implementations using locks.
It walks all the live Inode objects and flushes pending metadata changes
wherever needed.
This could be optimized by keeping a separate list of dirty Inodes,
but let's not get ahead of ourselves.
This synchronous approach to inodes is silly, obviously. I need to rework
it so that the in-memory CoreInode object is the canonical inode, and then
we just need a sync() that flushes pending changes to disk.
(Don't) use this to implement short-form output in ls.
I'm too tired to make a nice column formatting algorithm.
I just wanted something concise when I type "ls".
Pass the file name in a stack-allocated buffer instead of using an AK::String
when iterating directories. This dramatically reduces the amount of cycles
spent traversing the filesystem.
After I made stdio buffered, we were dropping anything unflushed on exit.
Since /bin/clear just prints out some escape sequences without a newline,
the entire buffer was being discarded.
Also add VirtualConsole::clear() that handles clearing of background VC's.
All right, we can now mmap() a file and it gets magically paged in from fs
in response to an NP page fault. This is really cool :^)
I need to refactor this to support sharing of read-only file-backed pages,
but it's cool to just have something working.
This is dirty but pretty cool! If we have a pending, unmasked signal for
a process that's blocked inside the kernel, we set up alternate stacks
for that process and unblock it to execute the signal handler.
A slightly different return trampoline is used here: since we need to
get back into the kernel, a dedicated syscall is used (sys$sigreturn.)
This restores the TSS contents of the process to the state it was in
while we were originally blocking in the kernel.
NOTE: There's currently only one "kernel resume TSS" so signal nesting
definitely won't work.
Processes are either alive (with many substates), dead or forgiven.
A dead process is forgiven when the parent waitpid()s on it.
Dead orphans are also forgiven.
There's a lot of work to be done around this.
It only works for sending a signal to a process that's in userspace code.
We implement reception by synthesizing a PUSHA+PUSHF in the receiving process
(operating on values in the TSS.)
The TSS CS:EIP is then rerouted to the signal handler and a tiny return
trampoline is constructed in a dedicated region in the receiving process.
Also hacked up /bin/kill to be able to send arbitrary signals (kill -N PID)
This is quite cool! The syscall entry point plumbs the register dump
down to sys$fork(), which uses it to set up the child process's TSS
in order to resume execution right after the int 0x80 fork() call. :^)
This works pretty well, although there is some problem with the kernel
alias mappings used to clone the parent process's regions. If I disable
the MM::release_page_directory() code, there's no problem. Probably there's
a premature freeing of a physical page somehow.