With the presence of signal handlers, it is possible that a thread might
be blocked multiple times. Picture for instance a signal handler using
read(), or wait() while the thread is already blocked elsewhere before
the handler is invoked.
To fix this, we turn m_blocker into a chain of handlers. Each block()
call now prepends to the list, and unblocking will only consider the
most recent (first) blocker in the chain.
Fixes#309
The only two places we set m_blocker now are Thread::set_state(), and
Thread::block(). set_state is mostly just an issue of clarity: we don't
want to end up with state() != Blocked with an m_blocker, because that's
weird. It's also possible: if we yield, someone else may set_state() us.
We also now set_state() and set m_blocker under lock in block(), rather
than unlocking which might allow someone else to mess with our internals
while we're in the process of trying to block.
This seems to fix sending STOP & CONT causing a panic.
My guess as to what was happening is this:
thread A blocks in select(): Blocking & m_blocker != nullptr
thread B sends SIGSTOP: Stopped & m_blocker != nullptr
thread B sends SIGCONT: we continue execution. Runnable & m_blocker != nullptr
thread A tries to block in select() again:
* sets m_blocker
* unlocks (in block_helper)
* someone else tries to unblock us? maybe from the old m_blocker? unclear -- clears m_blocker
* sets Blocked (while unlocked!)
So, thread A is left with state Blocked & m_blocker == nullptr, leading
to the scheduler assert (m_blocker != nullptr) failing.
Long story short, let's do all our data management with the lock _held_.
And use this to return EINTR in various places; some of which we were
not handling properly before.
This might expose a few bugs in userspace, but should be more compatible
with other POSIX systems, and is certainly a little cleaner.
And use it in the scheduler.
IntrusiveList is similar to InlineLinkedList, except that rather than
making assertions about the type (and requiring inheritance), it
provides an IntrusiveListNode type that can be used to put an instance
into many different lists at once.
As a proof of concept, port the scheduler over to use it. The only
downside here is that the "list" global needs to know the position of
the IntrusiveListNode member, so we have to position things a little
awkwardly to make that happen. We also move the runnable lists to
Thread, to avoid having to publicize the node.
Committing some things my hands did while browsing through this code.
- Mark all leaf classes "final".
- FileDescriptionBlocker now stores a NonnullRefPtr<FileDescription>.
- FileDescriptionBlocker::blocked_description() now returns a reference.
- ConditionBlocker takes a Function&&.
"Blocking" is not terribly informative, but now that everything is
ported over, we can force the blocker to provide us with a reason.
This does mean that to_string(State) needed to become a member, but
that's OK.
And use dbgprintf() consistently on a few of the pieces of logging here.
This is useful when trying to track thread switching when you don't
really care about what it's switching _to_.
Replace the class-based snooze alarm mechanism with a per-thread callback.
This makes it easy to block the current thread on an arbitrary condition:
void SomeDevice::wait_for_irq() {
m_interrupted = false;
current->block_until([this] { return m_interrupted; });
}
void SomeDevice::handle_irq() {
m_interrupted = true;
}
Use this in the SB16 driver, and in NetworkTask :^)
This makes waitpid() return when a child process is stopped via a signal.
Use this in Shell to catch stopped children and return control to the
command line. :^)
Fixes#298.
It's kinda funny how I can make a mistake like this in Serenity and then
get so used to it by spending lots of time using this API that I start to
believe that this is how printf() always worked..
After reading a bunch of POSIX specs, I've learned that a file descriptor
is the number that refers to a file description, not the description itself.
So this patch renames FileDescriptor to FileDescription, and Process now has
FileDescription* file_description(int fd).
Passing this flag to recv() temporarily puts the file descriptor into
non-blocking mode.
Also implement LocalSocket::recv() as a simple forwarding to read().
There are now two thread lists, one for runnable threads and one for non-
runnable threads. Thread::set_state() is responsible for moving threads
between the lists.
Each thread also has a back-pointer to the list it's currently in.
Hook this up in Terminal so that the '\a' character generates a beep.
Finally emit an '\a' character in the shell line editing code when
backspacing at the start of the line.
Make the Socket functions take a FileDescriptor& rather than a socket role
throughout the code. Also change threads to block on a FileDescriptor,
rather than either an fd index or a Socket.
Add a Thread::is_thread(void*) helper that we can use to check that the
incoming donation beneficiary is a valid thread. The O(n) here is a bit sad
and we should eventually rethink the process/thread table data structures.
This introduces a tiny amount of timer drift which I will have to fix
somehow eventually, but it's a huge improvement in timing consistency
as we no longer suddenly jump from e.g 10:45:49.123 to 10:45:50.000.
The scheduler now operates on threads, rather than on processes.
Each process has a main thread, and can have any number of additional
threads. The process exits when the main thread exits.
This patch doesn't actually spawn any additional threads, it merely
does all the plumbing needed to make it possible. :^)
This is accomplished using a new Alarm class and a BlockedSnoozing state.
Basically, you call Process::snooze_until(some_alarm) and then the scheduler
won't wake up the process until some_alarm.is_ringing() returns true.
Only the receive timeout is hooked up yet. You can change the timeout by
calling setsockopt(..., SOL_SOCKET, SO_RCVTIMEO, ...).
Use this mechanism to make /bin/ping report timeouts.