This method is used in BXVGADevice to create pages for the framebuffer;
we should neither make the PhysicalPage instances eternal, nor hand over
actual physical pages to the memory allocator.
After PhysicalPage::return_to_freelist(), an actual physical page
is returned back to the memory manager; which will create a new
PhysicalPage instance if it decides to reuse the physical page. This
means this PhysicalPage instance should be freed; otherwise it would
get leaked.
This makes no functional difference, but it makes it clear that
MemoryManager and PhysicalRegion take over the actual physical
page represented by this PhysicalPage instance.
Pages created with PhysicalPage::create_eternal() should *not* be
returnable to the freelist; and pages created with the regular
PhysicalPage::create() should be; not the other way around.
Previously the check for an empty part would happen before the
check for access and for the parent being a directory, and so an
error in those would not be detected.
If a symlink is not the last part of a path, the remaining part
of the path has to be further resolved against the symlink target.
With this, a path containing a symlink always resolves to the target
of the first (leftmost) symlink in it, for example any path of form
/proc/self/... resolves to the corresponding /proc/pid directory.
StringView character buffer is not guaranteed to be null-terminated;
in particular it will not be null-terminated when making a substring.
This means that the buffer can not be used with C functions that expect
a null-terminated string. Instead, StringView provides a convinient
operator == for comparing it with Strings and C stirngs, so use that.
This fixes /proc/self/... resolution failures in ProcFS, since the name
("self") passed to ProcFSInode::lookup() would not be null-terminated.
This significantly reduces the pressure on the kernel heap when
allocating a lot of pages.
Previously at about 250MB allocated, the free page list would outgrow
the kernel's heap. Given that there is no longer a page list, this does
not happen.
The next barrier will be the kernel memory used by the page records for
in-use memory. This kicks in at about 1GB.
This makes it possible to run Serenity with more than 64 MB of RAM.
Because each physical page is represented by a PhysicalPage object, and such
objects are allocated using kmalloc_eternal(), more RAM means more pressure
on kmalloc_eternal(), so we're gonna need a better strategy for this.
But for now, let's just celebrate that we can use the 128 MB of RAM we've
been telling QEMU to run with. :^)
Apparently you can boot from any MBR partition, not just the one labeled
as "bootable" or "active". The only ones you don't want to boot from are
the ones that don't exist.
String&& is just not very practical. Also return const String& when the
returned string is a member variable. The call site is free to make a copy
if he wants, but otherwise we can avoid the retain count churn.
After reading a bunch of POSIX specs, I've learned that a file descriptor
is the number that refers to a file description, not the description itself.
So this patch renames FileDescriptor to FileDescription, and Process now has
FileDescription* file_description(int fd).
This removes grub and all the loopback device business from the default
build process. Running grub takes about a second, and it turns out it's
inconsistently packaged in different distributions, which has led to
at least one confusing issue so far (grub-install vs grub2-install).
Removing it from the basic path will make it easier for people to try
Serenity out.
There are now two scripts that can be used to build a disk image:
1. `build-image-grub.sh` - this will build an image suitable for writing
to the IDE hard drive of a physical machine, complete with a partition
table and bootloader. This can be run in qemu with the `qgrub` target
for the `run` script.
2. `build-image-qemu.sh` - this is a simpler script which creates a bare
filesystem image rather than a full MBR disk.
Both of these call out to `build-root-filesystem.sh` to do most of the
work setting up... the root filesystem.
For completeness' sake, I've retained the `sync.sh` script as a simple
forwarding to `build-image-qemu.sh`.
This relies on the functionality from #194 and #195. #195 allows us to
use `/dev/hda` as the root device when nothing else is specified, and #194
works around a strange feature of qemu that appends a space to the kernel
command line.
This introduces very basic handling of the kernel command line to choose
the root filesystem at startup. Given that we currently only support a
single IDE hard drive, it's hard-coded to look for `/dev/hda` at the start
of the argument.
If there is nothing following this, or if the parameter is empty,
init_stage2 will try to load the ext2 filesystem from the start of the
device. This is intended to be the default behaviour when running
development builds, as it is faster to set up and doesn't require a
working grub installation.
If `/dev/hda` is followed by a number, init_stage2 will try to read an MBR
partition header from the drive, then load the requested partition. It
will reject non-numeric trailing data, and anything outside of partitions
one through four.