It is now possible to mount ext2 `DiskDevice` devices under Serenity on
any folder in the root filesystem. Currently any user can do this with
any permissions. There's a fair amount of assumptions made here too,
that might not be too good, but can be worked on in the future. This is
a good start to allow more dynamic operation under the OS itself.
It is also currently impossible to unmount and such, and devices will
fail to mount in Linux as the FS 'needs to be cleaned'. I'll work on
getting `umount` done ASAP to rectify this (as well as working on less
assumption-making in the mount syscall. We don't want to just be able
to mount DiskDevices!). This could probably be fixed with some `-t`
flag or something similar.
The previous implementation of the PIIX3/4 PATA/IDE channel driver only
supported a single drive, as the object model was wrong (the channel
inherits the IRQ, not the disk drive itself). This fixes it by 'attaching'
two `PATADiskDevices` to a `PATAChannel`, which makes more sense.
The reading/writing code is presented as is, which violates the spec
outlined by Seagate in the linked datasheet. That spec is rather old,
so it might not be 100% up to date, though may cause issues on real
hardware, so until we can actually test it, this will suffice.
And use this to return EINTR in various places; some of which we were
not handling properly before.
This might expose a few bugs in userspace, but should be more compatible
with other POSIX systems, and is certainly a little cleaner.
"Blocking" is not terribly informative, but now that everything is
ported over, we can force the blocker to provide us with a reason.
This does mean that to_string(State) needed to become a member, but
that's OK.
BXVGADevice was using a Size object for its framebuffer size. We shouldn't
be pulling in userspace code in the kernel like this, even if it's just
headers. :^)
Instead of LibGUI and WindowServer building their own copies of the drawing
and graphics code, let's it in a separate LibDraw library.
This avoids building the code twice, and will encourage better separation
of concerns. :^)
A basic Floppy Disk Controller device driver for any system later than (and including) the IBM AT. The driver is based on the documentation supplied by QEMU, which is the datasheet for the Intel 82078 Floppy Disk controller (found here: https://wiki.qemu.org/images/f/f0/29047403.pdf)
Naturally, floppy disks are a _very_ outdated storage medium, however, as Serenity is a throwback to aesthetic 90s computing, it's a definite must have. Not to mention that there are still a lot of floppy disks around, with countless petabytes of software on them, so it would be nice if people could create images of said disks with serenity.
The code for this is mostly clean. however there are a LOT of values specified in the datasheet, so some of them might be wrong, not to mention that the actual specification itself is rather dirt and seemingly hacked together.
I'm also only supporting 3.5" floppy disks, without PIO polling (DMA only), so if you want anything more/less than 1.44MB HD Floppys, you'll have to do it yourself.
I was messing around with this to tell the compiler that these functions
always return the same value no matter how many times you call them.
It doesn't really seem to improve code generation and it looks weird so
let's just get rid of it.
Replace the class-based snooze alarm mechanism with a per-thread callback.
This makes it easy to block the current thread on an arbitrary condition:
void SomeDevice::wait_for_irq() {
m_interrupted = false;
current->block_until([this] { return m_interrupted; });
}
void SomeDevice::handle_irq() {
m_interrupted = true;
}
Use this in the SB16 driver, and in NetworkTask :^)
We were sending 0xd0 to pause 8-bit playback. Not sure if this actually
makes any difference but it seems like the correct thing to do.
Also update 'm_interrupted' *after* handling things.
We should switch to Stereo but I'm having some trouble with that locally..
Since we intend to mix everything through SoundServer, let's just put the
card into 16-bit mode right away.
Also add an AudioServer that (right now) doesn't do much.
It tries to open, parse, and play a wav file. In the future, it can do more.
My general thinking here here is that /dev/audio will be "owned" by AudioServer,
and we'll do mixing in software before passing buffers off to the kernel
to play, but we have to start somewhere.
This is obviously more readable. If we ever run into a situation where
ref count churn is actually causing trouble in the future, we can deal with
it then. For now, let's keep it simple. :^)
Also tweak the kernel's Makefile to use -nostdinc and -nostdinc++.
This prevents us from picking up random headers from ../Root, which may
include older versions of kernel headers.
Since we still need <initializer_list> for Vector, we specifically include
the necessary GCC path. This is a bit hackish but it works for now.
The IDE Disk Controller driver has been extended to allow the secondary device on the channel to be initialised and used. A test as to whether this is working (for anyone interested) is to modify `init.cpp:87` to `auto dev_hd0 = IDEDiskDevice::create(IdeDiskDevice::DeviceType::SLAVE);`. The kernel will fail to boot, as there is no disk attached to CHANNEL 1's slave. This was born out of the fact that my FAT driver can't be tested as easily without creating a partition on `hda`.
Apparently you can boot from any MBR partition, not just the one labeled
as "bootable" or "active". The only ones you don't want to boot from are
the ones that don't exist.
After reading a bunch of POSIX specs, I've learned that a file descriptor
is the number that refers to a file description, not the description itself.
So this patch renames FileDescriptor to FileDescription, and Process now has
FileDescription* file_description(int fd).
This implements a passthrough disk driver that translates the read/write
block addresses by a fixed offset. This could form the basis of MBR
partition support if we were to parse the MBR table at boot and create that
OffsetDiskDevice dynamically, rather than seeking to a fixed offset.
This also introduces a dependency in the form of grub. You'll need to have
32-bit grub binaries installed to build the project now.
As a bonus, divorcing Serenity from qemu's kernel loading means we can now
*technically* boot on real hardware. It just... doesn't get very far yet.
If you write the `_disk_image` file to an IDE hard drive and boot it in a
machine that supports all the basic PC hardware, it *will* start loading
the kernel.
Also run it across the whole tree to get everything using the One True Style.
We don't yet run this in an automated fashion as it's a little slow, but
there is a snippet to do so in makeall.sh.
Hook this up in Terminal so that the '\a' character generates a beep.
Finally emit an '\a' character in the shell line editing code when
backspacing at the start of the line.