mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-21 23:20:20 +00:00
AK: Implement RedBlackTree container
This container is based on a balanced binary search tree, and as such allows for O(logn) worst-case insertion, removal, and search, as well as O(n) sorted iteration.
This commit is contained in:
parent
c4a9f0db82
commit
e962254eb2
Notes:
sideshowbarker
2024-07-18 20:28:31 +09:00
Author: https://github.com/IdanHo Commit: https://github.com/SerenityOS/serenity/commit/e962254eb23 Pull-request: https://github.com/SerenityOS/serenity/pull/6167 Reviewed-by: https://github.com/awesomekling Reviewed-by: https://github.com/bgianfo
3 changed files with 662 additions and 0 deletions
551
AK/RedBlackTree.h
Normal file
551
AK/RedBlackTree.h
Normal file
|
@ -0,0 +1,551 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@gmail.com>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice, this
|
||||
* list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <AK/Concepts.h>
|
||||
|
||||
namespace AK {
|
||||
|
||||
template<Integral K>
|
||||
class BaseRedBlackTree {
|
||||
public:
|
||||
[[nodiscard]] size_t size() const { return m_size; }
|
||||
[[nodiscard]] bool is_empty() const { return m_size == 0; }
|
||||
|
||||
enum class Color : bool {
|
||||
Red,
|
||||
Black
|
||||
};
|
||||
struct Node {
|
||||
Node* left_child { nullptr };
|
||||
Node* right_child { nullptr };
|
||||
Node* parent { nullptr };
|
||||
|
||||
Color color { Color::Red };
|
||||
|
||||
K key;
|
||||
|
||||
Node(K key)
|
||||
: key(key)
|
||||
{
|
||||
}
|
||||
virtual ~Node() {};
|
||||
};
|
||||
|
||||
protected:
|
||||
BaseRedBlackTree() = default; // These are protected to ensure no one instantiates the leaky base red black tree directly
|
||||
virtual ~BaseRedBlackTree() {};
|
||||
|
||||
void rotate_left(Node* subtree_root)
|
||||
{
|
||||
VERIFY(subtree_root);
|
||||
auto* pivot = subtree_root->right_child;
|
||||
VERIFY(pivot);
|
||||
auto* parent = subtree_root->parent;
|
||||
|
||||
// stage 1 - subtree_root's right child is now pivot's left child
|
||||
subtree_root->right_child = pivot->left_child;
|
||||
if (subtree_root->right_child)
|
||||
subtree_root->right_child->parent = subtree_root;
|
||||
|
||||
// stage 2 - pivot's left child is now subtree_root
|
||||
pivot->left_child = subtree_root;
|
||||
subtree_root->parent = pivot;
|
||||
|
||||
// stage 3 - update pivot's parent
|
||||
pivot->parent = parent;
|
||||
if (!parent) { // new root
|
||||
m_root = pivot;
|
||||
} else if (parent->left_child == subtree_root) { // we are the left child
|
||||
parent->left_child = pivot;
|
||||
} else { // we are the right child
|
||||
parent->right_child = pivot;
|
||||
}
|
||||
}
|
||||
|
||||
void rotate_right(Node* subtree_root)
|
||||
{
|
||||
VERIFY(subtree_root);
|
||||
auto* pivot = subtree_root->left_child;
|
||||
VERIFY(pivot);
|
||||
auto* parent = subtree_root->parent;
|
||||
|
||||
// stage 1 - subtree_root's left child is now pivot's right child
|
||||
subtree_root->left_child = pivot->right_child;
|
||||
if (subtree_root->left_child)
|
||||
subtree_root->left_child->parent = subtree_root;
|
||||
|
||||
// stage 2 - pivot's right child is now subtree_root
|
||||
pivot->right_child = subtree_root;
|
||||
subtree_root->parent = pivot;
|
||||
|
||||
// stage 3 - update pivot's parent
|
||||
pivot->parent = parent;
|
||||
if (!parent) { // new root
|
||||
m_root = pivot;
|
||||
} else if (parent->left_child == subtree_root) { // we are the left child
|
||||
parent->left_child = pivot;
|
||||
} else { // we are the right child
|
||||
parent->right_child = pivot;
|
||||
}
|
||||
}
|
||||
|
||||
static Node* find(Node* node, K key)
|
||||
{
|
||||
while (node && node->key != key) {
|
||||
if (key < node->key) {
|
||||
node = node->left_child;
|
||||
} else {
|
||||
node = node->right_child;
|
||||
}
|
||||
}
|
||||
return node;
|
||||
}
|
||||
|
||||
static Node* find_largest_not_above(Node* node, K key)
|
||||
{
|
||||
Node* candidate = nullptr;
|
||||
while (node) {
|
||||
if (key == node->key) {
|
||||
return node;
|
||||
} else if (key < node->key) {
|
||||
node = node->left_child;
|
||||
} else {
|
||||
candidate = node;
|
||||
node = node->right_child;
|
||||
}
|
||||
}
|
||||
return candidate;
|
||||
}
|
||||
|
||||
void insert(Node* node)
|
||||
{
|
||||
VERIFY(node);
|
||||
Node* parent = nullptr;
|
||||
Node* temp = m_root;
|
||||
while (temp) {
|
||||
parent = temp;
|
||||
if (node->key < temp->key) {
|
||||
temp = temp->left_child;
|
||||
} else {
|
||||
temp = temp->right_child;
|
||||
}
|
||||
}
|
||||
if (!parent) { // new root
|
||||
node->color = Color::Black;
|
||||
m_root = node;
|
||||
m_size = 1;
|
||||
m_minimum = node;
|
||||
return;
|
||||
} else if (node->key < parent->key) { // we are the left child
|
||||
parent->left_child = node;
|
||||
} else { // we are the right child
|
||||
parent->right_child = node;
|
||||
}
|
||||
node->parent = parent;
|
||||
|
||||
if (node->parent->parent) // no fixups to be done for a height <= 2 tree
|
||||
insert_fixups(node);
|
||||
|
||||
m_size++;
|
||||
if (m_minimum->left_child == node)
|
||||
m_minimum = node;
|
||||
}
|
||||
|
||||
void insert_fixups(Node* node)
|
||||
{
|
||||
VERIFY(node && node->color == Color::Red);
|
||||
while (node->parent && node->parent->color == Color::Red) {
|
||||
auto* grand_parent = node->parent->parent;
|
||||
if (grand_parent->right_child == node->parent) {
|
||||
auto* uncle = grand_parent->left_child;
|
||||
if (uncle && uncle->color == Color::Red) {
|
||||
node->parent->color = Color::Black;
|
||||
uncle->color = Color::Black;
|
||||
grand_parent->color = Color::Red;
|
||||
node = grand_parent;
|
||||
} else {
|
||||
if (node->parent->left_child == node) {
|
||||
node = node->parent;
|
||||
rotate_right(node);
|
||||
}
|
||||
node->parent->color = Color::Black;
|
||||
grand_parent->color = Color::Red;
|
||||
rotate_left(grand_parent);
|
||||
}
|
||||
} else {
|
||||
auto* uncle = grand_parent->right_child;
|
||||
if (uncle && uncle->color == Color::Red) {
|
||||
node->parent->color = Color::Black;
|
||||
uncle->color = Color::Black;
|
||||
grand_parent->color = Color::Red;
|
||||
node = grand_parent;
|
||||
} else {
|
||||
if (node->parent->right_child == node) {
|
||||
node = node->parent;
|
||||
rotate_left(node);
|
||||
}
|
||||
node->parent->color = Color::Black;
|
||||
grand_parent->color = Color::Red;
|
||||
rotate_right(grand_parent);
|
||||
}
|
||||
}
|
||||
}
|
||||
m_root->color = Color::Black; // the root should always be black
|
||||
}
|
||||
|
||||
void remove(Node* node)
|
||||
{
|
||||
VERIFY(node);
|
||||
|
||||
// special case: deleting the only node
|
||||
if (m_size == 1) {
|
||||
m_root = nullptr;
|
||||
m_size = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
if (m_minimum == node)
|
||||
m_minimum = successor(node);
|
||||
|
||||
// removal assumes the node has 0 or 1 child, so if we have 2, relink with the successor first (by definition the successor has no left child)
|
||||
// FIXME: since we dont know how a value is represented in the node, we cant simply swap the values and keys, and instead we relink the nodes
|
||||
// in place, this is quite a bit more expensive, as well as much less readable, is there a better way?
|
||||
if (node->left_child && node->right_child) {
|
||||
auto* successor_node = successor(node); // this is always non-null as all nodes besides the maximum node have a successor, and the maximum node has no right child
|
||||
auto neighbour_swap = successor_node->parent == node;
|
||||
node->left_child->parent = successor_node;
|
||||
if (!neighbour_swap)
|
||||
node->right_child->parent = successor_node;
|
||||
if (node->parent) {
|
||||
if (node->parent->left_child == node) {
|
||||
node->parent->left_child = successor_node;
|
||||
} else {
|
||||
node->parent->right_child = successor_node;
|
||||
}
|
||||
} else {
|
||||
m_root = successor_node;
|
||||
}
|
||||
if (successor_node->right_child)
|
||||
successor_node->right_child->parent = node;
|
||||
if (neighbour_swap) {
|
||||
successor_node->parent = node->parent;
|
||||
node->parent = successor_node;
|
||||
} else {
|
||||
if (successor_node->parent) {
|
||||
if (successor_node->parent->left_child == successor_node) {
|
||||
successor_node->parent->left_child = node;
|
||||
} else {
|
||||
successor_node->parent->right_child = node;
|
||||
}
|
||||
} else {
|
||||
m_root = node;
|
||||
}
|
||||
swap(node->parent, successor_node->parent);
|
||||
}
|
||||
swap(node->left_child, successor_node->left_child);
|
||||
if (neighbour_swap) {
|
||||
node->right_child = successor_node->right_child;
|
||||
successor_node->right_child = node;
|
||||
} else {
|
||||
swap(node->right_child, successor_node->right_child);
|
||||
}
|
||||
swap(node->color, successor_node->color);
|
||||
}
|
||||
|
||||
auto* child = node->left_child ?: node->right_child;
|
||||
|
||||
if (child)
|
||||
child->parent = node->parent;
|
||||
if (node->parent) {
|
||||
if (node->parent->left_child == node)
|
||||
node->parent->left_child = child;
|
||||
else
|
||||
node->parent->right_child = child;
|
||||
} else {
|
||||
m_root = child;
|
||||
}
|
||||
|
||||
// if the node is red then child must be black, and just replacing the node with its child should result in a valid tree (no change to black height)
|
||||
if (node->color != Color::Red)
|
||||
remove_fixups(child, node->parent);
|
||||
|
||||
m_size--;
|
||||
}
|
||||
|
||||
// We maintain parent as a separate argument since node might be null
|
||||
void remove_fixups(Node* node, Node* parent)
|
||||
{
|
||||
while (node != m_root && (!node || node->color == Color::Black)) {
|
||||
if (parent->left_child == node) {
|
||||
auto* sibling = parent->right_child;
|
||||
if (sibling->color == Color::Red) {
|
||||
sibling->color = Color::Black;
|
||||
parent->color = Color::Red;
|
||||
rotate_left(parent);
|
||||
sibling = parent->right_child;
|
||||
}
|
||||
if ((!sibling->left_child || sibling->left_child->color == Color::Black) && (!sibling->right_child || sibling->right_child->color == Color::Black)) {
|
||||
sibling->color = Color::Red;
|
||||
node = parent;
|
||||
} else {
|
||||
if (!sibling->right_child || sibling->right_child->color == Color::Black) {
|
||||
sibling->left_child->color = Color::Black; // null check?
|
||||
sibling->color = Color::Red;
|
||||
rotate_right(sibling);
|
||||
sibling = parent->right_child;
|
||||
}
|
||||
sibling->color = parent->color;
|
||||
parent->color = Color::Black;
|
||||
sibling->right_child->color = Color::Black; // null check?
|
||||
rotate_left(parent);
|
||||
node = m_root; // fixed
|
||||
}
|
||||
} else {
|
||||
auto* sibling = parent->left_child;
|
||||
if (sibling->color == Color::Red) {
|
||||
sibling->color = Color::Black;
|
||||
parent->color = Color::Red;
|
||||
rotate_right(parent);
|
||||
sibling = parent->left_child;
|
||||
}
|
||||
if ((!sibling->left_child || sibling->left_child->color == Color::Black) && (!sibling->right_child || sibling->right_child->color == Color::Black)) {
|
||||
sibling->color = Color::Red;
|
||||
node = parent;
|
||||
} else {
|
||||
if (!sibling->left_child || sibling->left_child->color == Color::Black) {
|
||||
sibling->right_child->color = Color::Black; // null check?
|
||||
sibling->color = Color::Red;
|
||||
rotate_left(sibling);
|
||||
sibling = parent->left_child;
|
||||
}
|
||||
sibling->color = parent->color;
|
||||
parent->color = Color::Black;
|
||||
sibling->left_child->color = Color::Black; // null check?
|
||||
rotate_right(parent);
|
||||
node = m_root; // fixed
|
||||
}
|
||||
}
|
||||
parent = node->parent;
|
||||
}
|
||||
node->color = Color::Black; // by this point node cant be null
|
||||
}
|
||||
|
||||
static Node* successor(Node* node)
|
||||
{
|
||||
VERIFY(node);
|
||||
if (node->right_child) {
|
||||
node = node->right_child;
|
||||
while (node->left_child)
|
||||
node = node->left_child;
|
||||
return node;
|
||||
} else {
|
||||
auto temp = node->parent;
|
||||
while (temp && node == temp->right_child) {
|
||||
node = temp;
|
||||
temp = temp->parent;
|
||||
}
|
||||
return temp;
|
||||
}
|
||||
}
|
||||
|
||||
static Node* predecessor(Node* node)
|
||||
{
|
||||
VERIFY(node);
|
||||
if (node->left_child) {
|
||||
node = node->left_child;
|
||||
while (node->right_child)
|
||||
node = node->right_child;
|
||||
return node;
|
||||
} else {
|
||||
auto temp = node->parent;
|
||||
while (temp && node == temp->left_child) {
|
||||
node = temp;
|
||||
temp = temp->parent;
|
||||
}
|
||||
return temp;
|
||||
}
|
||||
}
|
||||
|
||||
Node* m_root { nullptr };
|
||||
size_t m_size { 0 };
|
||||
Node* m_minimum { nullptr }; // maintained for O(1) begin()
|
||||
};
|
||||
|
||||
template<typename TreeType, typename ElementType>
|
||||
class RedBlackTreeIterator {
|
||||
public:
|
||||
RedBlackTreeIterator() = default;
|
||||
bool operator!=(const RedBlackTreeIterator& other) const { return m_node != other.m_node; }
|
||||
RedBlackTreeIterator& operator++()
|
||||
{
|
||||
if (!m_node)
|
||||
return *this;
|
||||
m_prev = m_node;
|
||||
// the complexity is O(logn) for each successor call, but the total complexity for all elements comes out to O(n), meaning the amortized cost for a single call is O(1)
|
||||
m_node = static_cast<typename TreeType::Node*>(TreeType::successor(m_node));
|
||||
return *this;
|
||||
}
|
||||
RedBlackTreeIterator& operator--()
|
||||
{
|
||||
if (!m_prev)
|
||||
return *this;
|
||||
m_node = m_prev;
|
||||
m_prev = static_cast<typename TreeType::Node*>(TreeType::predecessor(m_prev));
|
||||
return *this;
|
||||
}
|
||||
ElementType& operator*() { return m_node->value; }
|
||||
ElementType* operator->() { return &m_node->value; }
|
||||
[[nodiscard]] bool is_end() const { return !m_node; }
|
||||
[[nodiscard]] bool is_begin() const { return !m_prev; }
|
||||
|
||||
private:
|
||||
friend TreeType;
|
||||
explicit RedBlackTreeIterator(typename TreeType::Node* node, typename TreeType::Node* prev = nullptr)
|
||||
: m_node(node)
|
||||
, m_prev(prev)
|
||||
{
|
||||
}
|
||||
typename TreeType::Node* m_node { nullptr };
|
||||
typename TreeType::Node* m_prev { nullptr };
|
||||
};
|
||||
|
||||
template<Integral K, typename V>
|
||||
class RedBlackTree : public BaseRedBlackTree<K> {
|
||||
public:
|
||||
RedBlackTree() = default;
|
||||
virtual ~RedBlackTree() override
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
using BaseTree = BaseRedBlackTree<K>;
|
||||
|
||||
V* find(K key)
|
||||
{
|
||||
auto* node = static_cast<Node*>(BaseTree::find(this->m_root, key));
|
||||
if (!node)
|
||||
return nullptr;
|
||||
return &node->value;
|
||||
}
|
||||
|
||||
V* find_largest_not_above(K key)
|
||||
{
|
||||
auto* node = static_cast<Node*>(BaseTree::find_largest_not_above(this->m_root, key));
|
||||
if (!node)
|
||||
return nullptr;
|
||||
return &node->value;
|
||||
}
|
||||
|
||||
void insert(K key, const V& value)
|
||||
{
|
||||
insert(key, V(value));
|
||||
}
|
||||
|
||||
void insert(K key, V&& value)
|
||||
{
|
||||
auto* node = new Node(key, move(value));
|
||||
BaseTree::insert(node);
|
||||
}
|
||||
|
||||
using Iterator = RedBlackTreeIterator<RedBlackTree, V>;
|
||||
friend Iterator;
|
||||
Iterator begin() { return Iterator(static_cast<Node*>(this->m_minimum)); }
|
||||
Iterator end() { return {}; }
|
||||
Iterator begin_from(K key) { return Iterator(static_cast<Node*>(BaseTree::find(this->m_root, key))); }
|
||||
|
||||
using ConstIterator = RedBlackTreeIterator<const RedBlackTree, const V>;
|
||||
friend ConstIterator;
|
||||
ConstIterator begin() const { return ConstIterator(static_cast<Node*>(this->m_minimum)); }
|
||||
ConstIterator end() const { return {}; }
|
||||
ConstIterator begin_from(K key) const { return ConstIterator(static_cast<Node*>(BaseTree::find(this->m_root, key))); }
|
||||
|
||||
V unsafe_remove(K key)
|
||||
{
|
||||
auto* node = BaseTree::find(this->m_root, key);
|
||||
VERIFY(node);
|
||||
|
||||
BaseTree::remove(node);
|
||||
|
||||
V temp = move(static_cast<Node*>(node)->value);
|
||||
|
||||
node->right_child = nullptr;
|
||||
node->left_child = nullptr;
|
||||
delete node;
|
||||
|
||||
return temp;
|
||||
}
|
||||
|
||||
bool remove(K key)
|
||||
{
|
||||
auto* node = BaseTree::find(this->m_root, key);
|
||||
if (!node)
|
||||
return false;
|
||||
|
||||
BaseTree::remove(node);
|
||||
|
||||
node->right_child = nullptr;
|
||||
node->left_child = nullptr;
|
||||
delete node;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void clear()
|
||||
{
|
||||
if (this->m_root) {
|
||||
delete this->m_root;
|
||||
this->m_root = nullptr;
|
||||
}
|
||||
this->m_minimum = nullptr;
|
||||
this->m_size = 0;
|
||||
}
|
||||
|
||||
private:
|
||||
struct Node : BaseRedBlackTree<K>::Node {
|
||||
|
||||
V value;
|
||||
|
||||
Node(K key, V value)
|
||||
: BaseRedBlackTree<K>::Node(key)
|
||||
, value(move(value))
|
||||
{
|
||||
}
|
||||
|
||||
~Node()
|
||||
{
|
||||
if (this->left_child)
|
||||
delete this->left_child;
|
||||
if (this->right_child)
|
||||
delete this->right_child;
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
using AK::RedBlackTree;
|
|
@ -39,6 +39,7 @@ set(AK_TEST_SOURCES
|
|||
TestOptional.cpp
|
||||
TestQueue.cpp
|
||||
TestQuickSort.cpp
|
||||
TestRedBlackTree.cpp
|
||||
TestRefPtr.cpp
|
||||
TestSinglyLinkedList.cpp
|
||||
TestSourceGenerator.cpp
|
||||
|
|
110
AK/Tests/TestRedBlackTree.cpp
Normal file
110
AK/Tests/TestRedBlackTree.cpp
Normal file
|
@ -0,0 +1,110 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@gmail.com>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice, this
|
||||
* list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <AK/TestSuite.h>
|
||||
|
||||
#include <AK/Random.h>
|
||||
#include <AK/RedBlackTree.h>
|
||||
|
||||
TEST_CASE(construct)
|
||||
{
|
||||
RedBlackTree<int, int> empty;
|
||||
EXPECT(empty.is_empty());
|
||||
EXPECT(empty.size() == 0);
|
||||
}
|
||||
|
||||
TEST_CASE(ints)
|
||||
{
|
||||
RedBlackTree<int, int> ints;
|
||||
ints.insert(1, 10);
|
||||
ints.insert(3, 20);
|
||||
ints.insert(2, 30);
|
||||
EXPECT_EQ(ints.size(), 3u);
|
||||
EXPECT_EQ(*ints.find(3), 20);
|
||||
EXPECT_EQ(*ints.find(2), 30);
|
||||
EXPECT_EQ(*ints.find(1), 10);
|
||||
EXPECT(!ints.remove(4));
|
||||
EXPECT(ints.remove(2));
|
||||
EXPECT(ints.remove(1));
|
||||
EXPECT(ints.remove(3));
|
||||
EXPECT_EQ(ints.size(), 0u);
|
||||
}
|
||||
|
||||
TEST_CASE(largest_smaller_than)
|
||||
{
|
||||
RedBlackTree<int, int> ints;
|
||||
ints.insert(1, 10);
|
||||
ints.insert(11, 20);
|
||||
ints.insert(21, 30);
|
||||
EXPECT_EQ(ints.size(), 3u);
|
||||
EXPECT_EQ(*ints.find_largest_not_above(3), 10);
|
||||
EXPECT_EQ(*ints.find_largest_not_above(17), 20);
|
||||
EXPECT_EQ(*ints.find_largest_not_above(22), 30);
|
||||
EXPECT_EQ(ints.find_largest_not_above(-5), nullptr);
|
||||
}
|
||||
|
||||
TEST_CASE(key_ordered_iteration)
|
||||
{
|
||||
constexpr auto amount = 10000;
|
||||
RedBlackTree<int, size_t> test;
|
||||
Array<int, amount> keys {};
|
||||
|
||||
// generate random key order
|
||||
for (int i = 0; i < amount; i++) {
|
||||
keys[i] = i;
|
||||
}
|
||||
for (size_t i = 0; i < amount; i++) {
|
||||
swap(keys[i], keys[get_random<size_t>() % amount]);
|
||||
}
|
||||
|
||||
// insert random keys
|
||||
for (size_t i = 0; i < amount; i++) {
|
||||
test.insert(keys[i], keys[i]);
|
||||
}
|
||||
|
||||
// check key-ordered iteration
|
||||
size_t index = 0;
|
||||
for (auto& value : test) {
|
||||
EXPECT(value == index++);
|
||||
}
|
||||
|
||||
// ensure we can remove all of them (aka, tree structure is not destroyed somehow)
|
||||
for (size_t i = 0; i < amount; i++) {
|
||||
EXPECT(test.remove(i));
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE(clear)
|
||||
{
|
||||
RedBlackTree<size_t, size_t> test;
|
||||
for (size_t i = 0; i < 1000; i++) {
|
||||
test.insert(i, i);
|
||||
}
|
||||
test.clear();
|
||||
EXPECT_EQ(test.size(), 0u);
|
||||
}
|
||||
|
||||
TEST_MAIN(RedBlackTree)
|
Loading…
Reference in a new issue