Kernel/PCI: Split host bridge code from the Access singleton

Two classes are added - HostBridge and MemoryBackedHostBridge, which
both derive from HostController class. This allows the kernel to map
different busses from different PCI domains in the same time. Each
HostController implementation doesn't take the Address object to address
PCI devices but instead we take distinct numbers of the PCI bus, device
and function as it allows us to specify arbitrary PCI domains in the
Address structure and still to get the correct PCI devices. This also
matches the hardware behavior of PCI domains - the host bridge merely
takes memory operations or IO operations and translates them to
addressing of three components - PCI bus, device and function.

These changes also greatly simplify how enumeration of Host Bridges work
now - scanning of the hardware depends on what the Host bridges can do
for us, so in case we have multiple host bridges that expose a memory
mapped region or IO ports to access PCI configuration space, we simply
let the code of the host bridge to figure out how to fetch data for us.

Another semantical change is that a PCI domain structure is no longer
attached to a PhysicalAddress, so even in the case that the machine
doesn't implement PCI domains, we still treat that machine to contain 1
PCI domain to treat that one host bridge in the same way, like with a
machine with one or more PCI domains.
This commit is contained in:
Liav A 2022-01-07 14:10:44 +02:00 committed by Andreas Kling
parent 46f6c86362
commit ac2c01320b
Notes: sideshowbarker 2024-07-17 21:24:02 +09:00
10 changed files with 529 additions and 438 deletions

View file

@ -9,10 +9,13 @@
#include <AK/HashTable.h> #include <AK/HashTable.h>
#include <Kernel/Arch/x86/IO.h> #include <Kernel/Arch/x86/IO.h>
#include <Kernel/Bus/PCI/Access.h> #include <Kernel/Bus/PCI/Access.h>
#include <Kernel/Bus/PCI/Controller/HostBridge.h>
#include <Kernel/Bus/PCI/Controller/MemoryBackedHostBridge.h>
#include <Kernel/Debug.h> #include <Kernel/Debug.h>
#include <Kernel/Firmware/ACPI/Definitions.h> #include <Kernel/Firmware/ACPI/Definitions.h>
#include <Kernel/Memory/MemoryManager.h> #include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/Region.h> #include <Kernel/Memory/Region.h>
#include <Kernel/Memory/TypedMapping.h>
#include <Kernel/Sections.h> #include <Kernel/Sections.h>
namespace Kernel::PCI { namespace Kernel::PCI {
@ -34,28 +37,18 @@ bool Access::is_initialized()
return (s_access != nullptr); return (s_access != nullptr);
} }
UNMAP_AFTER_INIT bool Access::initialize_for_memory_access(PhysicalAddress mcfg_table) UNMAP_AFTER_INIT bool Access::find_and_register_pci_host_bridges_from_acpi_mcfg_table(PhysicalAddress mcfg_table)
{ {
if (Access::is_initialized()) u32 length = 0;
return false; u8 revision = 0;
{
auto mapped_mcfg_table = Memory::map_typed<ACPI::Structures::SDTHeader>(mcfg_table);
length = mapped_mcfg_table->length;
revision = mapped_mcfg_table->revision;
}
auto* access = new Access(Access::AccessType::Memory); if (length == sizeof(ACPI::Structures::SDTHeader))
if (!access->search_pci_domains_from_acpi_mcfg_table(mcfg_table))
return false; return false;
access->rescan_hardware_with_memory_addressing();
dbgln_if(PCI_DEBUG, "PCI: MMIO access initialised.");
return true;
}
UNMAP_AFTER_INIT bool Access::search_pci_domains_from_acpi_mcfg_table(PhysicalAddress mcfg_table)
{
auto checkup_region_or_error = MM.allocate_kernel_region(mcfg_table.page_base(), (PAGE_SIZE * 2), "PCI MCFG Checkup", Memory::Region::Access::ReadWrite);
if (checkup_region_or_error.is_error())
return false;
dbgln_if(PCI_DEBUG, "PCI: Checking MCFG Table length to choose the correct mapping size");
auto* sdt = (ACPI::Structures::SDTHeader*)checkup_region_or_error.value()->vaddr().offset(mcfg_table.offset_in_page()).as_ptr();
u32 length = sdt->length;
u8 revision = sdt->revision;
dbgln("PCI: MCFG, length: {}, revision: {}", length, revision); dbgln("PCI: MCFG, length: {}, revision: {}", length, revision);
@ -77,393 +70,66 @@ UNMAP_AFTER_INIT bool Access::search_pci_domains_from_acpi_mcfg_table(PhysicalAd
for (u32 index = 0; index < ((mcfg.header.length - sizeof(ACPI::Structures::MCFG)) / sizeof(ACPI::Structures::PCI_MMIO_Descriptor)); index++) { for (u32 index = 0; index < ((mcfg.header.length - sizeof(ACPI::Structures::MCFG)) / sizeof(ACPI::Structures::PCI_MMIO_Descriptor)); index++) {
u8 start_bus = mcfg.descriptors[index].start_pci_bus; u8 start_bus = mcfg.descriptors[index].start_pci_bus;
u8 end_bus = mcfg.descriptors[index].end_pci_bus; u8 end_bus = mcfg.descriptors[index].end_pci_bus;
u32 lower_addr = mcfg.descriptors[index].base_addr; u64 start_addr = mcfg.descriptors[index].base_addr;
auto result = m_domains.set(index, { PhysicalAddress(lower_addr), start_bus, end_bus }); Domain pci_domain { index, start_bus, end_bus };
VERIFY(result == AK::HashSetResult::InsertedNewEntry); dmesgln("PCI: New PCI domain @ {}, PCI buses ({}-{})", PhysicalAddress { start_addr }, start_bus, end_bus);
dmesgln("PCI: New PCI domain @ {}, PCI buses ({}-{})", PhysicalAddress { lower_addr }, start_bus, end_bus); auto host_bridge = MemoryBackedHostBridge::must_create(pci_domain, PhysicalAddress { start_addr });
add_host_controller(move(host_bridge));
} }
VERIFY(m_domains.contains(0));
dmesgln("PCI: MMIO domain: {}", m_domains.size());
return true; return true;
} }
UNMAP_AFTER_INIT bool Access::initialize_for_io_access() UNMAP_AFTER_INIT bool Access::initialize_for_multiple_pci_domains(PhysicalAddress mcfg_table)
{
if (Access::is_initialized())
return false;
auto* access = new Access();
if (!access->find_and_register_pci_host_bridges_from_acpi_mcfg_table(mcfg_table))
return false;
access->rescan_hardware();
dbgln_if(PCI_DEBUG, "PCI: access for multiple PCI domain initialised.");
return true;
}
UNMAP_AFTER_INIT bool Access::initialize_for_one_pci_domain()
{ {
if (Access::is_initialized()) { if (Access::is_initialized()) {
return false; return false;
} }
auto* access = new Access(Access::AccessType::IO); auto* access = new Access();
access->rescan_hardware_with_io_addressing(); auto host_bridge = HostBridge::must_create_with_io_access();
dbgln_if(PCI_DEBUG, "PCI: IO access initialised."); access->add_host_controller(move(host_bridge));
access->rescan_hardware();
dbgln_if(PCI_DEBUG, "PCI: access for one PCI domain initialised.");
return true; return true;
} }
UNMAP_AFTER_INIT Access::Access(AccessType access_type) UNMAP_AFTER_INIT void Access::add_host_controller(NonnullOwnPtr<HostController> controller)
: m_enumerated_buses(256, false) {
, m_access_type(access_type) auto domain_number = controller->domain_number();
m_host_controllers.set(domain_number, move(controller));
}
UNMAP_AFTER_INIT Access::Access()
{ {
if (access_type == AccessType::IO)
dmesgln("PCI: Using I/O instructions for PCI configuration space access");
else
dmesgln("PCI: Using memory access for PCI configuration space accesses");
s_access = this; s_access = this;
} }
Optional<PhysicalAddress> Access::determine_memory_mapped_bus_base_address(u32 domain, u8 bus) const
{
auto chosen_domain = m_domains.get(domain);
if (!chosen_domain.has_value())
return {};
if (!(chosen_domain.value().start_bus() <= bus && bus <= chosen_domain.value().end_bus()))
return {};
return chosen_domain.value().paddr().offset(memory_range_per_bus * (bus - chosen_domain.value().start_bus()));
}
void Access::map_bus_region(u32 domain, u8 bus)
{
VERIFY(m_access_lock.is_locked());
if (m_mapped_bus == bus && m_mapped_bus_region)
return;
auto bus_base_address = determine_memory_mapped_bus_base_address(domain, bus);
// FIXME: Find a way to propagate error from here.
if (!bus_base_address.has_value())
VERIFY_NOT_REACHED();
auto region_or_error = MM.allocate_kernel_region(bus_base_address.value(), memory_range_per_bus, "PCI ECAM", Memory::Region::Access::ReadWrite);
// FIXME: Find a way to propagate error from here.
if (region_or_error.is_error())
VERIFY_NOT_REACHED();
m_mapped_bus_region = region_or_error.release_value();
m_mapped_bus = bus;
dbgln_if(PCI_DEBUG, "PCI: New PCI ECAM Mapped region for bus {} @ {} {}", bus, m_mapped_bus_region->vaddr(), m_mapped_bus_region->physical_page(0)->paddr());
}
VirtualAddress Access::get_device_configuration_memory_mapped_space(Address address)
{
VERIFY(m_access_lock.is_locked());
dbgln_if(PCI_DEBUG, "PCI: Getting device configuration space for {}", address);
map_bus_region(address.domain(), address.bus());
return m_mapped_bus_region->vaddr().offset(mmio_device_space_size * address.function() + (mmio_device_space_size * to_underlying(Limits::MaxFunctionsPerDevice)) * address.device());
}
u8 Access::io_read8_field(Address address, u32 field)
{
MutexLocker lock(m_access_lock);
dbgln_if(PCI_DEBUG, "PCI: IO Reading 8-bit field {:#08x} for {}", field, address);
IO::out32(PCI::address_port, address.io_address_for_field(field));
return IO::in8(PCI::value_port + (field & 3));
}
u16 Access::io_read16_field(Address address, u32 field)
{
MutexLocker lock(m_access_lock);
dbgln_if(PCI_DEBUG, "PCI: IO Reading 16-bit field {:#08x} for {}", field, address);
IO::out32(PCI::address_port, address.io_address_for_field(field));
return IO::in16(PCI::value_port + (field & 2));
}
u32 Access::io_read32_field(Address address, u32 field)
{
MutexLocker lock(m_access_lock);
dbgln_if(PCI_DEBUG, "PCI: IO Reading 32-bit field {:#08x} for {}", field, address);
IO::out32(PCI::address_port, address.io_address_for_field(field));
return IO::in32(PCI::value_port);
}
void Access::io_write8_field(Address address, u32 field, u8 value)
{
MutexLocker lock(m_access_lock);
dbgln_if(PCI_DEBUG, "PCI: IO Writing to 8-bit field {:#08x}, value={:#02x} for {}", field, value, address);
IO::out32(PCI::address_port, address.io_address_for_field(field));
IO::out8(PCI::value_port + (field & 3), value);
}
void Access::io_write16_field(Address address, u32 field, u16 value)
{
MutexLocker lock(m_access_lock);
dbgln_if(PCI_DEBUG, "PCI: IO Writing to 16-bit field {:#08x}, value={:#02x} for {}", field, value, address);
IO::out32(PCI::address_port, address.io_address_for_field(field));
IO::out16(PCI::value_port + (field & 2), value);
}
void Access::io_write32_field(Address address, u32 field, u32 value)
{
MutexLocker lock(m_access_lock);
dbgln_if(PCI_DEBUG, "PCI: IO Writing to 32-bit field {:#08x}, value={:#02x} for {}", field, value, address);
IO::out32(PCI::address_port, address.io_address_for_field(field));
IO::out32(PCI::value_port, value);
}
u8 Access::memory_read8_field(Address address, u32 field)
{
MutexLocker lock(m_access_lock);
VERIFY(field <= 0xfff);
dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 8-bit field {:#08x} for {}", field, address);
return *((volatile u8*)(get_device_configuration_memory_mapped_space(address).get() + (field & 0xfff)));
}
u16 Access::memory_read16_field(Address address, u32 field)
{
MutexLocker lock(m_access_lock);
VERIFY(field < 0xfff);
dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 16-bit field {:#08x} for {}", field, address);
u16 data = 0;
ByteReader::load<u16>(get_device_configuration_memory_mapped_space(address).offset(field & 0xfff).as_ptr(), data);
return data;
}
u32 Access::memory_read32_field(Address address, u32 field)
{
MutexLocker lock(m_access_lock);
VERIFY(field <= 0xffc);
dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 32-bit field {:#08x} for {}", field, address);
u32 data = 0;
ByteReader::load<u32>(get_device_configuration_memory_mapped_space(address).offset(field & 0xfff).as_ptr(), data);
return data;
}
void Access::memory_write8_field(Address address, u32 field, u8 value)
{
MutexLocker lock(m_access_lock);
VERIFY(field <= 0xfff);
dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 8-bit field {:#08x}, value={:#02x} for {}", field, value, address);
*((volatile u8*)(get_device_configuration_memory_mapped_space(address).get() + (field & 0xfff))) = value;
}
void Access::memory_write16_field(Address address, u32 field, u16 value)
{
MutexLocker lock(m_access_lock);
VERIFY(field < 0xfff);
dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 16-bit field {:#08x}, value={:#02x} for {}", field, value, address);
ByteReader::store<u16>(get_device_configuration_memory_mapped_space(address).offset(field & 0xfff).as_ptr(), value);
}
void Access::memory_write32_field(Address address, u32 field, u32 value)
{
MutexLocker lock(m_access_lock);
VERIFY(field <= 0xffc);
dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 32-bit field {:#08x}, value={:#02x} for {}", field, value, address);
ByteReader::store<u32>(get_device_configuration_memory_mapped_space(address).offset(field & 0xfff).as_ptr(), value);
}
void Access::write8_field(Address address, u32 field, u8 value)
{
switch (m_access_type) {
case AccessType::IO:
io_write8_field(address, field, value);
return;
case AccessType::Memory:
memory_write8_field(address, field, value);
return;
}
VERIFY_NOT_REACHED();
}
void Access::write16_field(Address address, u32 field, u16 value)
{
switch (m_access_type) {
case AccessType::IO:
io_write16_field(address, field, value);
return;
case AccessType::Memory:
memory_write16_field(address, field, value);
return;
}
VERIFY_NOT_REACHED();
}
void Access::write32_field(Address address, u32 field, u32 value)
{
switch (m_access_type) {
case AccessType::IO:
io_write32_field(address, field, value);
return;
case AccessType::Memory:
memory_write32_field(address, field, value);
return;
}
VERIFY_NOT_REACHED();
}
u8 Access::read8_field(Address address, RegisterOffset field)
{
return read8_field(address, to_underlying(field));
}
u16 Access::read16_field(Address address, RegisterOffset field)
{
return read16_field(address, to_underlying(field));
}
u8 Access::read8_field(Address address, u32 field)
{
switch (m_access_type) {
case AccessType::IO:
return io_read8_field(address, field);
case AccessType::Memory:
return memory_read8_field(address, field);
}
VERIFY_NOT_REACHED();
}
u16 Access::read16_field(Address address, u32 field)
{
switch (m_access_type) {
case AccessType::IO:
return io_read16_field(address, field);
case AccessType::Memory:
return memory_read16_field(address, field);
}
VERIFY_NOT_REACHED();
}
u32 Access::read32_field(Address address, u32 field)
{
switch (m_access_type) {
case AccessType::IO:
return io_read32_field(address, field);
case AccessType::Memory:
return memory_read32_field(address, field);
}
VERIFY_NOT_REACHED();
}
UNMAP_AFTER_INIT void Access::rescan_hardware_with_memory_addressing()
{
MutexLocker locker(m_access_lock);
SpinlockLocker scan_locker(m_scan_lock);
VERIFY(m_device_identifiers.is_empty());
VERIFY(!m_domains.is_empty());
VERIFY(m_access_type == AccessType::Memory);
for (u32 domain = 0; domain < m_domains.size(); domain++) {
dbgln_if(PCI_DEBUG, "PCI: Scan memory mapped domain {}", domain);
// Single PCI host controller.
if ((read8_field(Address(domain), PCI::RegisterOffset::HEADER_TYPE) & 0x80) == 0) {
enumerate_bus(-1, 0, true);
return;
}
// Multiple PCI host controllers.
for (u8 function = 0; function < 8; ++function) {
if (read16_field(Address(domain, 0, 0, function), PCI::RegisterOffset::VENDOR_ID) == PCI::none_value)
break;
enumerate_bus(-1, function, false);
}
}
}
UNMAP_AFTER_INIT void Access::rescan_hardware_with_io_addressing()
{
MutexLocker locker(m_access_lock);
SpinlockLocker scan_locker(m_scan_lock);
VERIFY(m_device_identifiers.is_empty());
VERIFY(m_access_type == AccessType::IO);
dbgln_if(PCI_DEBUG, "PCI: IO enumerating hardware");
// First scan bus 0. Find any device on that bus, and if it's a PCI-to-PCI
// bridge, recursively scan it too.
m_enumerated_buses.set(0, true);
enumerate_bus(-1, 0, true);
// Handle Multiple PCI host bridges on slot 0, device 0.
// If we happen to miss some PCI buses because they are not reachable through
// recursive PCI-to-PCI bridges starting from bus 0, we might find them here.
if ((read8_field(Address(), PCI::RegisterOffset::HEADER_TYPE) & 0x80) != 0) {
for (int bus = 1; bus < 256; ++bus) {
if (read16_field(Address(0, 0, 0, bus), PCI::RegisterOffset::VENDOR_ID) == PCI::none_value)
continue;
if (read16_field(Address(0, 0, 0, bus), PCI::RegisterOffset::CLASS) != 0x6)
continue;
if (m_enumerated_buses.get(bus))
continue;
enumerate_bus(-1, bus, false);
m_enumerated_buses.set(bus, true);
}
}
}
UNMAP_AFTER_INIT void Access::rescan_hardware() UNMAP_AFTER_INIT void Access::rescan_hardware()
{ {
switch (m_access_type) { MutexLocker locker(m_access_lock);
case AccessType::IO: SpinlockLocker scan_locker(m_scan_lock);
rescan_hardware_with_io_addressing(); VERIFY(m_device_identifiers.is_empty());
break; for (auto it = m_host_controllers.begin(); it != m_host_controllers.end(); ++it) {
case AccessType::Memory: (*it).value->enumerate_attached_devices([this](DeviceIdentifier device_identifier) -> void {
rescan_hardware_with_memory_addressing(); m_device_identifiers.append(device_identifier);
break; });
default:
VERIFY_NOT_REACHED();
} }
} }
UNMAP_AFTER_INIT Optional<u8> Access::get_capabilities_pointer(Address address)
{
dbgln_if(PCI_DEBUG, "PCI: Getting capabilities pointer for {}", address);
if (read16_field(address, PCI::RegisterOffset::STATUS) & (1 << 4)) {
dbgln_if(PCI_DEBUG, "PCI: Found capabilities pointer for {}", address);
return read8_field(address, PCI::RegisterOffset::CAPABILITIES_POINTER);
}
dbgln_if(PCI_DEBUG, "PCI: No capabilities pointer for {}", address);
return {};
}
UNMAP_AFTER_INIT Vector<Capability> Access::get_capabilities(Address address)
{
dbgln_if(PCI_DEBUG, "PCI: Getting capabilities for {}", address);
auto capabilities_pointer = get_capabilities_pointer(address);
if (!capabilities_pointer.has_value()) {
dbgln_if(PCI_DEBUG, "PCI: No capabilities for {}", address);
return {};
}
Vector<Capability> capabilities;
auto capability_pointer = capabilities_pointer.value();
while (capability_pointer != 0) {
dbgln_if(PCI_DEBUG, "PCI: Reading in capability at {:#02x} for {}", capability_pointer, address);
u16 capability_header = read16_field(address, capability_pointer);
u8 capability_id = capability_header & 0xff;
capabilities.append({ address, capability_id, capability_pointer });
capability_pointer = capability_header >> 8;
}
return capabilities;
}
UNMAP_AFTER_INIT void Access::enumerate_functions(int type, u8 bus, u8 device, u8 function, bool recursive)
{
dbgln_if(PCI_DEBUG, "PCI: Enumerating function type={}, bus={}, device={}, function={}", type, bus, device, function);
Address address(0, bus, device, function);
auto read_type = (read8_field(address, PCI::RegisterOffset::CLASS) << 8u) | read8_field(address, PCI::RegisterOffset::SUBCLASS);
if (type == -1 || type == read_type) {
HardwareID id = { read16_field(address, PCI::RegisterOffset::VENDOR_ID), read16_field(address, PCI::RegisterOffset::DEVICE_ID) };
ClassCode class_code = read8_field(address, PCI::RegisterOffset::CLASS);
SubclassCode subclass_code = read8_field(address, PCI::RegisterOffset::SUBCLASS);
ProgrammingInterface prog_if = read8_field(address, PCI::RegisterOffset::PROG_IF);
RevisionID revision_id = read8_field(address, PCI::RegisterOffset::REVISION_ID);
SubsystemID subsystem_id = read16_field(address, PCI::RegisterOffset::SUBSYSTEM_ID);
SubsystemVendorID subsystem_vendor_id = read16_field(address, PCI::RegisterOffset::SUBSYSTEM_VENDOR_ID);
InterruptLine interrupt_line = read8_field(address, PCI::RegisterOffset::INTERRUPT_LINE);
InterruptPin interrupt_pin = read8_field(address, PCI::RegisterOffset::INTERRUPT_PIN);
m_device_identifiers.append(DeviceIdentifier { address, id, revision_id, class_code, subclass_code, prog_if, subsystem_id, subsystem_vendor_id, interrupt_line, interrupt_pin, get_capabilities(address) });
}
if (read_type == (to_underlying(PCI::ClassID::Bridge) << 8 | to_underlying(PCI::Bridge::SubclassID::PCI_TO_PCI))
&& recursive
&& (!m_enumerated_buses.get(read8_field(address, PCI::RegisterOffset::SECONDARY_BUS)))) {
u8 secondary_bus = read8_field(address, PCI::RegisterOffset::SECONDARY_BUS);
dbgln_if(PCI_DEBUG, "PCI: Found secondary bus: {}", secondary_bus);
VERIFY(secondary_bus != bus);
m_enumerated_buses.set(secondary_bus, true);
enumerate_bus(type, secondary_bus, recursive);
}
}
UNMAP_AFTER_INIT void Access::enumerate_device(int type, u8 bus, u8 device, bool recursive)
{
dbgln_if(PCI_DEBUG, "PCI: Enumerating device type={}, bus={}, device={}", type, bus, device);
Address address(0, bus, device, 0);
if (read16_field(address, PCI::RegisterOffset::VENDOR_ID) == PCI::none_value)
return;
enumerate_functions(type, bus, device, 0, recursive);
if (!(read8_field(address, PCI::RegisterOffset::HEADER_TYPE) & 0x80))
return;
for (u8 function = 1; function < 8; ++function) {
Address address(0, bus, device, function);
if (read16_field(address, PCI::RegisterOffset::VENDOR_ID) != PCI::none_value)
enumerate_functions(type, bus, device, function, recursive);
}
}
UNMAP_AFTER_INIT void Access::enumerate_bus(int type, u8 bus, bool recursive)
{
dbgln_if(PCI_DEBUG, "PCI: Enumerating bus type={}, bus={}", type, bus);
for (u8 device = 0; device < 32; ++device)
enumerate_device(type, bus, device, recursive);
}
void Access::fast_enumerate(Function<void(DeviceIdentifier const&)>& callback) const void Access::fast_enumerate(Function<void(DeviceIdentifier const&)>& callback) const
{ {
MutexLocker locker(m_access_lock); MutexLocker locker(m_access_lock);
@ -486,4 +152,57 @@ DeviceIdentifier Access::get_device_identifier(Address address) const
VERIFY_NOT_REACHED(); VERIFY_NOT_REACHED();
} }
void Access::write8_field(Address address, u32 field, u8 value)
{
MutexLocker lock(m_access_lock);
VERIFY(m_host_controllers.contains(address.domain()));
auto& controller = *m_host_controllers.get(address.domain()).value();
controller.write8_field(address.bus(), address.device(), address.function(), field, value);
}
void Access::write16_field(Address address, u32 field, u16 value)
{
MutexLocker lock(m_access_lock);
VERIFY(m_host_controllers.contains(address.domain()));
auto& controller = *m_host_controllers.get(address.domain()).value();
controller.write16_field(address.bus(), address.device(), address.function(), field, value);
}
void Access::write32_field(Address address, u32 field, u32 value)
{
MutexLocker lock(m_access_lock);
VERIFY(m_host_controllers.contains(address.domain()));
auto& controller = *m_host_controllers.get(address.domain()).value();
controller.write32_field(address.bus(), address.device(), address.function(), field, value);
}
u8 Access::read8_field(Address address, RegisterOffset field)
{
return read8_field(address, to_underlying(field));
}
u16 Access::read16_field(Address address, RegisterOffset field)
{
return read16_field(address, to_underlying(field));
}
u8 Access::read8_field(Address address, u32 field)
{
MutexLocker lock(m_access_lock);
VERIFY(m_host_controllers.contains(address.domain()));
auto& controller = *m_host_controllers.get(address.domain()).value();
return controller.read8_field(address.bus(), address.device(), address.function(), field);
}
u16 Access::read16_field(Address address, u32 field)
{
MutexLocker lock(m_access_lock);
VERIFY(m_host_controllers.contains(address.domain()));
auto& controller = *m_host_controllers.get(address.domain()).value();
return controller.read16_field(address.bus(), address.device(), address.function(), field);
}
u32 Access::read32_field(Address address, u32 field)
{
MutexLocker lock(m_access_lock);
VERIFY(m_host_controllers.contains(address.domain()));
auto& controller = *m_host_controllers.get(address.domain()).value();
return controller.read32_field(address.bus(), address.device(), address.function(), field);
}
} }

View file

@ -8,26 +8,21 @@
#include <AK/Bitmap.h> #include <AK/Bitmap.h>
#include <AK/Vector.h> #include <AK/Vector.h>
#include <Kernel/Bus/PCI/Controller/HostController.h>
#include <Kernel/Bus/PCI/Definitions.h> #include <Kernel/Bus/PCI/Definitions.h>
#include <Kernel/FileSystem/SysFS.h> #include <Kernel/FileSystem/SysFS.h>
#include <Kernel/Locking/Spinlock.h> #include <Kernel/Locking/Spinlock.h>
namespace Kernel::PCI { namespace Kernel::PCI {
class HostBridge;
class Access { class Access {
public: public:
enum class AccessType { static bool initialize_for_multiple_pci_domains(PhysicalAddress mcfg_table);
IO, static bool initialize_for_one_pci_domain();
Memory,
};
static bool initialize_for_memory_access(PhysicalAddress mcfg_table);
static bool initialize_for_io_access();
void fast_enumerate(Function<void(DeviceIdentifier const&)>&) const; void fast_enumerate(Function<void(DeviceIdentifier const&)>&) const;
void rescan_hardware(); void rescan_hardware();
void rescan_hardware_with_memory_addressing();
void rescan_hardware_with_io_addressing();
static Access& the(); static Access& the();
static bool is_initialized(); static bool is_initialized();
@ -40,50 +35,25 @@ public:
u32 read32_field(Address address, u32 field); u32 read32_field(Address address, u32 field);
DeviceIdentifier get_device_identifier(Address address) const; DeviceIdentifier get_device_identifier(Address address) const;
Spinlock const& scan_lock() const { return m_scan_lock; }
Mutex const& access_lock() const { return m_access_lock; }
private: private:
u8 read8_field(Address address, RegisterOffset field); u8 read8_field(Address address, RegisterOffset field);
u16 read16_field(Address address, RegisterOffset field); u16 read16_field(Address address, RegisterOffset field);
void enumerate_bus(int type, u8 bus, bool recursive); void add_host_controller(NonnullOwnPtr<HostController>);
void enumerate_functions(int type, u8 bus, u8 device, u8 function, bool recursive); bool find_and_register_pci_host_bridges_from_acpi_mcfg_table(PhysicalAddress mcfg);
void enumerate_device(int type, u8 bus, u8 device, bool recursive); Access();
explicit Access(AccessType);
bool search_pci_domains_from_acpi_mcfg_table(PhysicalAddress mcfg);
Vector<Capability> get_capabilities(Address); Vector<Capability> get_capabilities(Address);
Optional<u8> get_capabilities_pointer(Address address); Optional<u8> get_capabilities_pointer(Address address);
// IO access (legacy) operations
u8 io_read8_field(Address address, u32 field);
u16 io_read16_field(Address address, u32 field);
u32 io_read32_field(Address address, u32 field);
void io_write8_field(Address address, u32, u8);
void io_write16_field(Address address, u32, u16);
void io_write32_field(Address address, u32, u32);
u16 io_read_type(Address address);
// Memory-mapped access operations
void map_bus_region(u32 domain, u8 bus);
u8 memory_read8_field(Address address, u32 field);
u16 memory_read16_field(Address address, u32 field);
u32 memory_read32_field(Address address, u32 field);
void memory_write8_field(Address address, u32, u8);
void memory_write16_field(Address address, u32, u16);
void memory_write32_field(Address address, u32, u32);
u16 memory_read_type(Address address);
VirtualAddress get_device_configuration_memory_mapped_space(Address address);
Optional<PhysicalAddress> determine_memory_mapped_bus_base_address(u32 domain, u8 bus) const;
// Data-members for accessing Memory mapped PCI devices' configuration spaces
u8 m_mapped_bus { 0 };
OwnPtr<Memory::Region> m_mapped_bus_region;
HashMap<u32, PCI::Domain> m_domains;
// General Data-members // General Data-members
mutable Mutex m_access_lock; mutable Mutex m_access_lock;
mutable Spinlock m_scan_lock; mutable Spinlock m_scan_lock;
Bitmap m_enumerated_buses;
AccessType m_access_type; HashMap<u32, NonnullOwnPtr<HostController>> m_host_controllers;
Vector<DeviceIdentifier> m_device_identifiers; Vector<DeviceIdentifier> m_device_identifiers;
}; };
} }

View file

@ -0,0 +1,175 @@
/*
* Copyright (c) 2022, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Arch/x86/IO.h>
#include <Kernel/Bus/PCI/Access.h>
#include <Kernel/Bus/PCI/Controller/HostBridge.h>
#include <Kernel/Sections.h>
namespace Kernel::PCI {
NonnullOwnPtr<HostBridge> HostBridge::must_create_with_io_access()
{
PCI::Domain domain { 0, 0, 0xff };
return adopt_own_if_nonnull(new (nothrow) HostBridge(domain)).release_nonnull();
}
HostBridge::HostBridge(PCI::Domain const& domain)
: HostController(domain)
, m_enumerated_buses(256, false)
{
}
UNMAP_AFTER_INIT Optional<u8> HostBridge::get_capabilities_pointer_for_function(BusNumber bus, DeviceNumber device, FunctionNumber function)
{
if (read16_field(bus, device, function, PCI::RegisterOffset::STATUS) & (1 << 4)) {
return read8_field(bus, device, function, PCI::RegisterOffset::CAPABILITIES_POINTER);
}
return {};
}
UNMAP_AFTER_INIT Vector<Capability> HostBridge::get_capabilities_for_function(BusNumber bus, DeviceNumber device, FunctionNumber function)
{
auto capabilities_pointer = get_capabilities_pointer_for_function(bus, device, function);
if (!capabilities_pointer.has_value()) {
return {};
}
Vector<Capability> capabilities;
auto capability_pointer = capabilities_pointer.value();
while (capability_pointer != 0) {
u16 capability_header = read16_field(bus, device, function, capability_pointer);
u8 capability_id = capability_header & 0xff;
// FIXME: Don't attach a PCI address to a capability object
capabilities.append({ Address(domain_number(), bus.value(), device.value(), function.value()), capability_id, capability_pointer });
capability_pointer = capability_header >> 8;
}
return capabilities;
}
UNMAP_AFTER_INIT void HostBridge::enumerate_functions(Function<void(DeviceIdentifier)> const& callback, BusNumber bus, DeviceNumber device, FunctionNumber function, bool recursive_search_into_bridges)
{
dbgln_if(PCI_DEBUG, "PCI: Enumerating function, bus={}, device={}, function={}", bus, device, function);
Address address(0, bus.value(), device.value(), function.value());
auto pci_class = (read8_field(bus, device, function, PCI::RegisterOffset::CLASS) << 8u) | read8_field(bus, device, function, PCI::RegisterOffset::SUBCLASS);
HardwareID id = { read16_field(bus, device, function, PCI::RegisterOffset::VENDOR_ID), read16_field(bus, device, function, PCI::RegisterOffset::DEVICE_ID) };
ClassCode class_code = read8_field(bus, device, function, PCI::RegisterOffset::CLASS);
SubclassCode subclass_code = read8_field(bus, device, function, PCI::RegisterOffset::SUBCLASS);
ProgrammingInterface prog_if = read8_field(bus, device, function, PCI::RegisterOffset::PROG_IF);
RevisionID revision_id = read8_field(bus, device, function, PCI::RegisterOffset::REVISION_ID);
SubsystemID subsystem_id = read16_field(bus, device, function, PCI::RegisterOffset::SUBSYSTEM_ID);
SubsystemVendorID subsystem_vendor_id = read16_field(bus, device, function, PCI::RegisterOffset::SUBSYSTEM_VENDOR_ID);
InterruptLine interrupt_line = read8_field(bus, device, function, PCI::RegisterOffset::INTERRUPT_LINE);
InterruptPin interrupt_pin = read8_field(bus, device, function, PCI::RegisterOffset::INTERRUPT_PIN);
auto capabilities = get_capabilities_for_function(bus, device, function);
callback(DeviceIdentifier { address, id, revision_id, class_code, subclass_code, prog_if, subsystem_id, subsystem_vendor_id, interrupt_line, interrupt_pin, capabilities });
if (pci_class == (to_underlying(PCI::ClassID::Bridge) << 8 | to_underlying(PCI::Bridge::SubclassID::PCI_TO_PCI))
&& recursive_search_into_bridges
&& (!m_enumerated_buses.get(read8_field(bus, device, function, PCI::RegisterOffset::SECONDARY_BUS)))) {
u8 secondary_bus = read8_field(bus, device, function, PCI::RegisterOffset::SECONDARY_BUS);
dbgln_if(PCI_DEBUG, "PCI: Found secondary bus: {}", secondary_bus);
VERIFY(secondary_bus != bus);
m_enumerated_buses.set(secondary_bus, true);
enumerate_bus(callback, secondary_bus, recursive_search_into_bridges);
}
}
UNMAP_AFTER_INIT void HostBridge::enumerate_device(Function<void(DeviceIdentifier)> const& callback, BusNumber bus, DeviceNumber device, bool recursive_search_into_bridges)
{
dbgln_if(PCI_DEBUG, "PCI: Enumerating device in bus={}, device={}", bus, device);
if (read16_field(bus, device, 0, PCI::RegisterOffset::VENDOR_ID) == PCI::none_value)
return;
enumerate_functions(callback, bus, device, 0, recursive_search_into_bridges);
if (!(read8_field(bus, device, 0, PCI::RegisterOffset::HEADER_TYPE) & 0x80))
return;
for (u8 function = 1; function < 8; ++function) {
if (read16_field(bus, device, function, PCI::RegisterOffset::VENDOR_ID) != PCI::none_value)
enumerate_functions(callback, bus, device, function, recursive_search_into_bridges);
}
}
UNMAP_AFTER_INIT void HostBridge::enumerate_bus(Function<void(DeviceIdentifier)> const& callback, BusNumber bus, bool recursive_search_into_bridges)
{
dbgln_if(PCI_DEBUG, "PCI: Enumerating bus {}", bus);
for (u8 device = 0; device < 32; ++device)
enumerate_device(callback, bus, device, recursive_search_into_bridges);
}
UNMAP_AFTER_INIT void HostBridge::enumerate_attached_devices(Function<void(DeviceIdentifier)> callback)
{
VERIFY(Access::the().access_lock().is_locked());
VERIFY(Access::the().scan_lock().is_locked());
// First scan bus 0. Find any device on that bus, and if it's a PCI-to-PCI
// bridge, recursively scan it too.
m_enumerated_buses.set(0, true);
enumerate_bus(callback, 0, true);
// Handle Multiple PCI host bridges on slot 0, device 0.
// If we happen to miss some PCI buses because they are not reachable through
// recursive PCI-to-PCI bridges starting from bus 0, we might find them here.
if ((read8_field(0, 0, 0, PCI::RegisterOffset::HEADER_TYPE) & 0x80) != 0) {
for (int bus_as_function_number = 1; bus_as_function_number < 256; ++bus_as_function_number) {
if (read16_field(0, 0, bus_as_function_number, PCI::RegisterOffset::VENDOR_ID) == PCI::none_value)
continue;
if (read16_field(0, 0, bus_as_function_number, PCI::RegisterOffset::CLASS) != 0x6)
continue;
if (m_enumerated_buses.get(bus_as_function_number))
continue;
enumerate_bus(callback, bus_as_function_number, false);
m_enumerated_buses.set(bus_as_function_number, true);
}
}
}
static u32 io_address_for_pci_field(BusNumber bus, DeviceNumber device, FunctionNumber function, u8 field)
{
return 0x80000000u | (bus.value() << 16u) | (device.value() << 11u) | (function.value() << 8u) | (field & 0xfc);
}
void HostBridge::write8_field(BusNumber bus, DeviceNumber device, FunctionNumber function, u32 field, u8 value)
{
IO::out32(PCI::address_port, io_address_for_pci_field(bus, device, function, field));
IO::out8(PCI::value_port + (field & 3), value);
}
void HostBridge::write16_field(BusNumber bus, DeviceNumber device, FunctionNumber function, u32 field, u16 value)
{
IO::out32(PCI::address_port, io_address_for_pci_field(bus, device, function, field));
IO::out16(PCI::value_port + (field & 2), value);
}
void HostBridge::write32_field(BusNumber bus, DeviceNumber device, FunctionNumber function, u32 field, u32 value)
{
IO::out32(PCI::address_port, io_address_for_pci_field(bus, device, function, field));
IO::out32(PCI::value_port, value);
}
u8 HostBridge::read8_field(BusNumber bus, DeviceNumber device, FunctionNumber function, u32 field)
{
IO::out32(PCI::address_port, io_address_for_pci_field(bus, device, function, field));
return IO::in8(PCI::value_port + (field & 3));
}
u16 HostBridge::read16_field(BusNumber bus, DeviceNumber device, FunctionNumber function, u32 field)
{
IO::out32(PCI::address_port, io_address_for_pci_field(bus, device, function, field));
return IO::in16(PCI::value_port + (field & 2));
}
u32 HostBridge::read32_field(BusNumber bus, DeviceNumber device, FunctionNumber function, u32 field)
{
IO::out32(PCI::address_port, io_address_for_pci_field(bus, device, function, field));
return IO::in32(PCI::value_port);
}
u8 HostBridge::read8_field(BusNumber bus, DeviceNumber device, FunctionNumber function, PCI::RegisterOffset field)
{
return read8_field(bus, device, function, to_underlying(field));
}
u16 HostBridge::read16_field(BusNumber bus, DeviceNumber device, FunctionNumber function, PCI::RegisterOffset field)
{
return read16_field(bus, device, function, to_underlying(field));
}
}

View file

@ -0,0 +1,49 @@
/*
* Copyright (c) 2022, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Bitmap.h>
#include <AK/NonnullOwnPtr.h>
#include <AK/OwnPtr.h>
#include <AK/Vector.h>
#include <Kernel/Bus/PCI/Controller/HostController.h>
#include <Kernel/Locking/Spinlock.h>
namespace Kernel::PCI {
class HostBridge : public HostController {
public:
static NonnullOwnPtr<HostBridge> must_create_with_io_access();
virtual void write8_field(BusNumber, DeviceNumber, FunctionNumber, u32 field, u8 value) override;
virtual void write16_field(BusNumber, DeviceNumber, FunctionNumber, u32 field, u16 value) override;
virtual void write32_field(BusNumber, DeviceNumber, FunctionNumber, u32 field, u32 value) override;
virtual u8 read8_field(BusNumber, DeviceNumber, FunctionNumber, u32 field) override;
virtual u16 read16_field(BusNumber, DeviceNumber, FunctionNumber, u32 field) override;
virtual u32 read32_field(BusNumber, DeviceNumber, FunctionNumber, u32 field) override;
protected:
explicit HostBridge(PCI::Domain const&);
private:
virtual void enumerate_attached_devices(Function<void(DeviceIdentifier)> callback) override;
Bitmap m_enumerated_buses;
u8 read8_field(BusNumber, DeviceNumber, FunctionNumber, RegisterOffset field);
u16 read16_field(BusNumber, DeviceNumber, FunctionNumber, RegisterOffset field);
Optional<u8> get_capabilities_pointer_for_function(BusNumber, DeviceNumber, FunctionNumber);
Vector<Capability> get_capabilities_for_function(BusNumber, DeviceNumber, FunctionNumber);
void enumerate_bus(Function<void(DeviceIdentifier)> const& callback, BusNumber, bool recursive);
void enumerate_functions(Function<void(DeviceIdentifier)> const& callback, BusNumber, DeviceNumber, FunctionNumber, bool recursive);
void enumerate_device(Function<void(DeviceIdentifier)> const& callback, BusNumber bus, DeviceNumber device, bool recursive);
};
}

View file

@ -0,0 +1,45 @@
/*
* Copyright (c) 2022, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Bitmap.h>
#include <AK/Vector.h>
#include <Kernel/Bus/PCI/Definitions.h>
#include <Kernel/Locking/Spinlock.h>
namespace Kernel::PCI {
TYPEDEF_DISTINCT_ORDERED_ID(u8, BusNumber);
TYPEDEF_DISTINCT_ORDERED_ID(u8, DeviceNumber);
TYPEDEF_DISTINCT_ORDERED_ID(u8, FunctionNumber);
class HostController {
public:
virtual ~HostController() = default;
virtual void write8_field(BusNumber, DeviceNumber, FunctionNumber, u32 field, u8 value) = 0;
virtual void write16_field(BusNumber, DeviceNumber, FunctionNumber, u32 field, u16 value) = 0;
virtual void write32_field(BusNumber, DeviceNumber, FunctionNumber, u32 field, u32 value) = 0;
virtual u8 read8_field(BusNumber, DeviceNumber, FunctionNumber, u32 field) = 0;
virtual u16 read16_field(BusNumber, DeviceNumber, FunctionNumber, u32 field) = 0;
virtual u32 read32_field(BusNumber, DeviceNumber, FunctionNumber, u32 field) = 0;
u32 domain_number() const { return m_domain.domain_number(); }
virtual void enumerate_attached_devices(Function<void(DeviceIdentifier)> callback) = 0;
protected:
explicit HostController(PCI::Domain const& domain)
: m_domain(domain)
{
}
const PCI::Domain m_domain;
};
}

View file

@ -0,0 +1,94 @@
/*
* Copyright (c) 2022, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/ByteReader.h>
#include <Kernel/Arch/x86/IO.h>
#include <Kernel/Bus/PCI/Access.h>
#include <Kernel/Bus/PCI/Controller/MemoryBackedHostBridge.h>
namespace Kernel::PCI {
NonnullOwnPtr<MemoryBackedHostBridge> MemoryBackedHostBridge::must_create(Domain const& domain, PhysicalAddress start_address)
{
return adopt_own_if_nonnull(new (nothrow) MemoryBackedHostBridge(domain, start_address)).release_nonnull();
}
MemoryBackedHostBridge::MemoryBackedHostBridge(PCI::Domain const& domain, PhysicalAddress start_address)
: HostBridge(domain)
, m_start_address(start_address)
{
}
u8 MemoryBackedHostBridge::read8_field(BusNumber bus, DeviceNumber device, FunctionNumber function, u32 field)
{
VERIFY(Access::the().access_lock().is_locked());
VERIFY(field <= 0xfff);
return *((volatile u8*)(get_device_configuration_memory_mapped_space(bus, device, function).get() + (field & 0xfff)));
}
u16 MemoryBackedHostBridge::read16_field(BusNumber bus, DeviceNumber device, FunctionNumber function, u32 field)
{
VERIFY(Access::the().access_lock().is_locked());
VERIFY(field < 0xfff);
u16 data = 0;
ByteReader::load<u16>(get_device_configuration_memory_mapped_space(bus, device, function).offset(field & 0xfff).as_ptr(), data);
return data;
}
u32 MemoryBackedHostBridge::read32_field(BusNumber bus, DeviceNumber device, FunctionNumber function, u32 field)
{
VERIFY(Access::the().access_lock().is_locked());
VERIFY(field <= 0xffc);
u32 data = 0;
ByteReader::load<u32>(get_device_configuration_memory_mapped_space(bus, device, function).offset(field & 0xfff).as_ptr(), data);
return data;
}
void MemoryBackedHostBridge::write8_field(BusNumber bus, DeviceNumber device, FunctionNumber function, u32 field, u8 value)
{
VERIFY(Access::the().access_lock().is_locked());
VERIFY(field <= 0xfff);
*((volatile u8*)(get_device_configuration_memory_mapped_space(bus, device, function).get() + (field & 0xfff))) = value;
}
void MemoryBackedHostBridge::write16_field(BusNumber bus, DeviceNumber device, FunctionNumber function, u32 field, u16 value)
{
VERIFY(Access::the().access_lock().is_locked());
VERIFY(field < 0xfff);
ByteReader::store<u16>(get_device_configuration_memory_mapped_space(bus, device, function).offset(field & 0xfff).as_ptr(), value);
}
void MemoryBackedHostBridge::write32_field(BusNumber bus, DeviceNumber device, FunctionNumber function, u32 field, u32 value)
{
VERIFY(Access::the().access_lock().is_locked());
VERIFY(field <= 0xffc);
ByteReader::store<u32>(get_device_configuration_memory_mapped_space(bus, device, function).offset(field & 0xfff).as_ptr(), value);
}
void MemoryBackedHostBridge::map_bus_region(BusNumber bus)
{
VERIFY(Access::the().access_lock().is_locked());
if (m_mapped_bus == bus && m_mapped_bus_region)
return;
auto bus_base_address = determine_memory_mapped_bus_base_address(bus);
auto region_or_error = MM.allocate_kernel_region(bus_base_address, memory_range_per_bus, "PCI ECAM", Memory::Region::Access::ReadWrite);
// FIXME: Find a way to propagate error from here.
if (region_or_error.is_error())
VERIFY_NOT_REACHED();
m_mapped_bus_region = region_or_error.release_value();
m_mapped_bus = bus;
dbgln_if(PCI_DEBUG, "PCI: New PCI ECAM Mapped region for bus {} @ {} {}", bus, m_mapped_bus_region->vaddr(), m_mapped_bus_region->physical_page(0)->paddr());
}
VirtualAddress MemoryBackedHostBridge::get_device_configuration_memory_mapped_space(BusNumber bus, DeviceNumber device, FunctionNumber function)
{
VERIFY(Access::the().access_lock().is_locked());
map_bus_region(bus);
return m_mapped_bus_region->vaddr().offset(mmio_device_space_size * function.value() + (mmio_device_space_size * to_underlying(Limits::MaxFunctionsPerDevice)) * device.value());
}
PhysicalAddress MemoryBackedHostBridge::determine_memory_mapped_bus_base_address(BusNumber bus) const
{
auto start_bus = min(bus.value(), m_domain.start_bus());
return m_start_address.offset(memory_range_per_bus * (bus.value() - start_bus));
}
}

View file

@ -0,0 +1,42 @@
/*
* Copyright (c) 2022, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Bitmap.h>
#include <AK/Vector.h>
#include <Kernel/Bus/PCI/Controller/HostBridge.h>
#include <Kernel/Locking/Spinlock.h>
namespace Kernel::PCI {
class MemoryBackedHostBridge final : public HostBridge {
public:
static NonnullOwnPtr<MemoryBackedHostBridge> must_create(Domain const&, PhysicalAddress);
virtual void write8_field(BusNumber, DeviceNumber, FunctionNumber, u32 field, u8 value) override;
virtual void write16_field(BusNumber, DeviceNumber, FunctionNumber, u32 field, u16 value) override;
virtual void write32_field(BusNumber, DeviceNumber, FunctionNumber, u32 field, u32 value) override;
virtual u8 read8_field(BusNumber, DeviceNumber, FunctionNumber, u32 field) override;
virtual u16 read16_field(BusNumber, DeviceNumber, FunctionNumber, u32 field) override;
virtual u32 read32_field(BusNumber, DeviceNumber, FunctionNumber, u32 field) override;
private:
MemoryBackedHostBridge(PCI::Domain const&, PhysicalAddress);
// Memory-mapped access operations
void map_bus_region(BusNumber);
VirtualAddress get_device_configuration_memory_mapped_space(BusNumber, DeviceNumber, FunctionNumber);
PhysicalAddress determine_memory_mapped_bus_base_address(BusNumber) const;
// Data-members for accessing Memory mapped PCI devices' configuration spaces
BusNumber m_mapped_bus { 0 };
OwnPtr<Memory::Region> m_mapped_bus_region;
PhysicalAddress m_start_address;
};
}

View file

@ -128,18 +128,18 @@ struct HardwareID {
class Domain { class Domain {
public: public:
Domain() = delete; Domain() = delete;
Domain(PhysicalAddress base_address, u8 start_bus, u8 end_bus) Domain(u32 domain_number, u8 start_bus, u8 end_bus)
: m_base_addr(base_address) : m_domain_number(domain_number)
, m_start_bus(start_bus) , m_start_bus(start_bus)
, m_end_bus(end_bus) , m_end_bus(end_bus)
{ {
} }
u8 start_bus() const { return m_start_bus; } u8 start_bus() const { return m_start_bus; }
u8 end_bus() const { return m_end_bus; } u8 end_bus() const { return m_end_bus; }
PhysicalAddress paddr() const { return m_base_addr; } u32 domain_number() const { return m_domain_number; }
private: private:
PhysicalAddress m_base_addr; u32 m_domain_number;
u8 m_start_bus; u8 m_start_bus;
u8 m_end_bus; u8 m_end_bus;
}; };
@ -189,11 +189,6 @@ public:
u8 device() const { return m_device; } u8 device() const { return m_device; }
u8 function() const { return m_function; } u8 function() const { return m_function; }
u32 io_address_for_field(u8 field) const
{
return 0x80000000u | (m_bus << 16u) | (m_device << 11u) | (m_function << 8u) | (field & 0xfc);
}
private: private:
u32 m_domain { 0 }; u32 m_domain { 0 };
u8 m_bus { 0 }; u8 m_bus { 0 };

View file

@ -40,12 +40,12 @@ UNMAP_AFTER_INIT void initialize()
case PCIAccessLevel::MemoryAddressing: { case PCIAccessLevel::MemoryAddressing: {
auto mcfg = ACPI::Parser::the()->find_table("MCFG"); auto mcfg = ACPI::Parser::the()->find_table("MCFG");
VERIFY(mcfg.has_value()); VERIFY(mcfg.has_value());
auto success = Access::initialize_for_memory_access(mcfg.value()); auto success = Access::initialize_for_multiple_pci_domains(mcfg.value());
VERIFY(success); VERIFY(success);
break; break;
} }
case PCIAccessLevel::IOAddressing: { case PCIAccessLevel::IOAddressing: {
auto success = Access::initialize_for_io_access(); auto success = Access::initialize_for_one_pci_domain();
VERIFY(success); VERIFY(success);
break; break;
} }

View file

@ -19,6 +19,8 @@ set(KERNEL_HEAP_SOURCES
set(KERNEL_SOURCES set(KERNEL_SOURCES
AddressSanitizer.cpp AddressSanitizer.cpp
Bus/PCI/Controller/HostBridge.cpp
Bus/PCI/Controller/MemoryBackedHostBridge.cpp
Bus/PCI/Access.cpp Bus/PCI/Access.cpp
Bus/PCI/API.cpp Bus/PCI/API.cpp
Bus/PCI/Device.cpp Bus/PCI/Device.cpp