AK: Add a Variant<Ts...> implementation

Also adds an AK::Empty struct, because 'empty' variants are useful, but
this implementation leaves that to the user (i.e. a variant cannot
actually be empty, but it can contain an instance of Empty - i.e. a
byte).
Note that this is more of a constrained Any type, but they basically do
the same things anyway :^)
This commit is contained in:
Ali Mohammad Pur 2021-04-26 01:34:10 +04:30 committed by Andreas Kling
parent ab03c6fadf
commit a51113c58e
Notes: sideshowbarker 2024-07-18 18:41:10 +09:00
3 changed files with 397 additions and 0 deletions

View file

@ -56,6 +56,7 @@ set(AK_TEST_SOURCES
TestTypedTransfer.cpp
TestURL.cpp
TestUtf8.cpp
TestVariant.cpp
TestVector.cpp
TestWeakPtr.cpp
)

112
AK/Tests/TestVariant.cpp Normal file
View file

@ -0,0 +1,112 @@
/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenity.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibTest/TestSuite.h>
#include <AK/Variant.h>
TEST_CASE(basic)
{
Variant<int, String> the_value { 42 };
EXPECT(the_value.has<int>());
EXPECT_EQ(the_value.get<int>(), 42);
the_value = String("42");
EXPECT(the_value.has<String>());
EXPECT_EQ(the_value.get<String>(), "42");
}
TEST_CASE(visit)
{
bool correct = false;
Variant<int, String, float> the_value { 42.0f };
the_value.visit(
[&](const int&) { correct = false; },
[&](const String&) { correct = false; },
[&](const float&) { correct = true; });
EXPECT(correct);
}
TEST_CASE(destructor)
{
struct DestructionChecker {
explicit DestructionChecker(bool& was_destroyed)
: m_was_destroyed(was_destroyed)
{
}
~DestructionChecker()
{
m_was_destroyed = true;
}
bool& m_was_destroyed;
};
bool was_destroyed = false;
{
Variant<DestructionChecker> test_variant { DestructionChecker { was_destroyed } };
}
EXPECT(was_destroyed);
}
TEST_CASE(move_moves)
{
struct NoCopy {
AK_MAKE_NONCOPYABLE(NoCopy);
public:
NoCopy() = default;
NoCopy(NoCopy&&) = default;
};
Variant<NoCopy, int> first_variant { 42 };
// Should not fail to compile
first_variant = NoCopy {};
Variant<NoCopy, int> second_variant = move(first_variant);
EXPECT(second_variant.has<NoCopy>());
}
TEST_CASE(downcast)
{
Variant<i8, i16, i32, i64> one_integer_to_rule_them_all { static_cast<i32>(42) };
auto fake_integer = one_integer_to_rule_them_all.downcast<i8, i32>();
EXPECT(fake_integer.has<i32>());
EXPECT(one_integer_to_rule_them_all.has<i32>());
EXPECT_EQ(fake_integer.get<i32>(), 42);
EXPECT_EQ(one_integer_to_rule_them_all.get<i32>(), 42);
fake_integer = static_cast<i8>(60);
one_integer_to_rule_them_all = fake_integer.downcast<i8, i16>().downcast<i8, i32, float>().downcast<i8, i16, i32, i64>();
EXPECT(fake_integer.has<i8>());
EXPECT(one_integer_to_rule_them_all.has<i8>());
EXPECT_EQ(fake_integer.get<i8>(), 60);
EXPECT_EQ(one_integer_to_rule_them_all.get<i8>(), 60);
}
TEST_CASE(moved_from_state)
{
// Note: This test requires that Vector's moved-from state be consistent
// it need not be in a specific state (though as it is currently implemented,
// a moved-from vector is the same as a newly-created vector)
// This test does not make assumptions about the state itself, but rather that
// it remains consistent when done on different instances.
// Should this assumption be broken, we should probably switch to defining a local
// class that has fixed semantics, but I doubt the moved-from state of Vector will
// change any time soon :P
Vector<i32> bunch_of_values { 1, 2, 3, 4, 5, 6, 7, 8 };
Variant<Vector<i32>, Empty> optionally_a_bunch_of_values { Vector<i32> { 1, 2, 3, 4, 5, 6, 7, 8 } };
{
[[maybe_unused]] auto devnull_0 = move(bunch_of_values);
[[maybe_unused]] auto devnull_1 = move(optionally_a_bunch_of_values);
}
// The moved-from state should be the same in both cases, and the variant should still contain a moved-from vector.
// Note: Use after move is intentional.
EXPECT(optionally_a_bunch_of_values.has<Vector<i32>>());
auto same_contents = __builtin_memcmp(&bunch_of_values, &optionally_a_bunch_of_values.get<Vector<i32>>(), sizeof(bunch_of_values)) == 0;
EXPECT(same_contents);
}

284
AK/Variant.h Normal file
View file

@ -0,0 +1,284 @@
/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Array.h>
#include <AK/BitCast.h>
#include <AK/StdLibExtras.h>
#include <typeinfo>
namespace AK::Detail {
template<typename... Ts>
struct Variant;
template<typename F, typename... Ts>
struct Variant<F, Ts...> {
static void delete_(const std::type_info& id, void* data)
{
if (id == typeid(F))
bit_cast<F*>(data)->~F();
else
Variant<Ts...>::delete_(id, data);
}
static void move_(const std::type_info& old_id, void* old_data, void* new_data)
{
if (old_id == typeid(F))
new (new_data) F(move(*bit_cast<F*>(old_data)));
else
Variant<Ts...>::move_(old_id, old_data, new_data);
}
static void copy_(const std::type_info& old_id, const void* old_data, void* new_data)
{
if (old_id == typeid(F))
new (new_data) F(*bit_cast<F*>(old_data));
else
Variant<Ts...>::copy_(old_id, old_data, new_data);
}
template<typename Visitor>
static void visit_(const std::type_info& id, void* data, Visitor&& visitor)
{
if (id == typeid(F))
visitor(*bit_cast<F*>(data));
else
Variant<Ts...>::visit_(id, data, forward<Visitor>(visitor));
}
template<typename Visitor>
static void visit_(const std::type_info& id, const void* data, Visitor&& visitor)
{
if (id == typeid(F))
visitor(*bit_cast<const F*>(data));
else
Variant<Ts...>::visit_(id, data, forward<Visitor>(visitor));
}
};
template<>
struct Variant<> {
static void delete_(const std::type_info&, void*) { }
static void move_(const std::type_info&, void*, void*) { }
static void copy_(const std::type_info&, const void*, void*) { }
template<typename Visitor>
static void visit_(const std::type_info&, void*, Visitor&&) { }
template<typename Visitor>
static void visit_(const std::type_info&, const void*, Visitor&&) { }
};
struct VariantNoClearTag {
explicit VariantNoClearTag() = default;
};
template<typename T, typename Base>
struct VariantConstructors {
VariantConstructors(T&& t)
{
internal_cast().template set<T>(forward<T>(t), VariantNoClearTag {});
}
VariantConstructors() { }
Base& operator=(const T& value)
{
Base variant { value };
internal_cast() = move(variant);
return internal_cast();
}
Base& operator=(T&& value)
{
Base variant { move(value) };
internal_cast() = move(variant);
return internal_cast();
}
private:
[[nodiscard]] Base& internal_cast()
{
// Warning: Internal type shenanigans - VariantsConstrutors<T, Base> <- Base
// Not the other way around, so be _really_ careful not to cause issues.
return *reinterpret_cast<Base*>(this);
}
};
}
namespace AK {
struct Empty {
};
template<typename... Ts>
struct Variant
: public Detail::VariantConstructors<Ts, Variant<Ts...>>... {
template<typename... NewTs>
friend struct Variant;
Variant(const Variant& old)
: Detail::VariantConstructors<Ts, Variant<Ts...>>()...
, m_type_info(old.m_type_info)
{
Helper::copy_(*old.m_type_info, old.m_data, m_data);
}
// Note: A moved-from variant emulates the state of the object it contains
// so if a variant containing an int is moved from, it will still contain that int
// and if a variant with a nontrivial move ctor is moved from, it may or may not be valid
// but it will still contain the "moved-from" state of the object it previously contained.
Variant(Variant&& old)
: Detail::VariantConstructors<Ts, Variant<Ts...>>()...
, m_type_info(old.m_type_info)
{
Helper::move_(*old.m_type_info, old.m_data, m_data);
}
~Variant()
{
Helper::delete_(*m_type_info, m_data);
}
Variant& operator=(const Variant& other)
{
m_type_info = other.m_type_info;
Helper::copy_(*other.m_type_info, other.m_data, m_data);
return *this;
}
Variant& operator=(Variant&& other)
{
m_type_info = other.m_type_info;
Helper::move_(*other.m_type_info, other.m_data, m_data);
return *this;
}
using Detail::VariantConstructors<Ts, Variant<Ts...>>::VariantConstructors...;
template<typename T>
void set(T&& t)
{
Helper::delete_(*m_type_info, m_data);
new (m_data) T(forward<T>(t));
m_type_info = &typeid(T);
}
template<typename T>
void set(T&& t, Detail::VariantNoClearTag)
{
new (m_data) T(forward<T>(t));
m_type_info = &typeid(T);
}
template<typename T>
T* get_pointer()
{
if (typeid(T) == *m_type_info)
return reinterpret_cast<T*>(m_data);
return nullptr;
}
template<typename T>
T& get()
{
VERIFY(typeid(T) == *m_type_info);
return *reinterpret_cast<T*>(m_data);
}
template<typename T>
const T* get_pointer() const
{
if (typeid(T) == *m_type_info)
return reinterpret_cast<const T*>(m_data);
return nullptr;
}
template<typename T>
const T& get() const
{
VERIFY(typeid(T) == *m_type_info);
return *reinterpret_cast<const T*>(m_data);
}
template<typename T>
[[nodiscard]] bool has() const
{
return typeid(T) == *m_type_info;
}
template<typename... Fs>
void visit(Fs&&... functions)
{
Visitor<Fs...> visitor { forward<Fs>(functions)... };
Helper::visit_(*m_type_info, m_data, visitor);
}
template<typename... Fs>
void visit(Fs&&... functions) const
{
Visitor<Fs...> visitor { forward<Fs>(functions)... };
Helper::visit_(*m_type_info, m_data, visitor);
}
template<typename... NewTs>
Variant<NewTs...> downcast() &&
{
VERIFY(covers<NewTs...>());
Variant<NewTs...> instance { m_type_info };
Helper::move_(*m_type_info, m_data, instance.m_data);
return instance;
}
template<typename... NewTs>
Variant<NewTs...> downcast() &
{
VERIFY(covers<NewTs...>());
Variant<NewTs...> instance { m_type_info };
Helper::copy_(*m_type_info, m_data, instance.m_data);
return instance;
}
private:
static constexpr auto data_size = integer_sequence_generate_array<size_t>(0, IntegerSequence<size_t, sizeof(Ts)...>()).max();
static constexpr auto data_alignment = integer_sequence_generate_array<size_t>(0, IntegerSequence<size_t, alignof(Ts)...>()).max();
using Helper = Detail::Variant<Ts...>;
template<typename... NewTs>
bool covers() const
{
return ((typeid(NewTs) == *m_type_info) || ...);
}
explicit Variant(const std::type_info* type_info)
: Detail::VariantConstructors<Ts, Variant<Ts...>>()...
, m_type_info(type_info)
{
}
template<typename... Fs>
struct Visitor : Fs... {
Visitor(Fs&&... args)
: Fs(args)...
{
}
using Fs::operator()...;
};
alignas(data_alignment) u8 m_data[data_size];
// Note: Make sure not to default-initialize!
// VariantConstructors::VariantConstructors(T) will set this to the correct value
// So default-constructing to anything will leave the first initialization with that value instead of the correct one.
const std::type_info* m_type_info;
};
}
using AK::Empty;
using AK::Variant;