LibCrypto: Move each subsection into its own namespace

This commit is contained in:
AnotherTest 2020-04-07 14:42:27 +04:30 committed by Andreas Kling
parent 96dd7c2996
commit 4f89a377a4
Notes: sideshowbarker 2024-07-19 07:06:21 +09:00
9 changed files with 3256 additions and 3228 deletions

View file

@ -28,395 +28,399 @@
#include <LibCrypto/Cipher/AES.h> #include <LibCrypto/Cipher/AES.h>
namespace Crypto { namespace Crypto {
namespace Cipher {
template <typename T> template <typename T>
constexpr u32 get_key(T pt) constexpr u32 get_key(T pt)
{ {
return ((u32)(pt)[0] << 24) ^ ((u32)(pt)[1] << 16) ^ ((u32)(pt)[2] << 8) ^ ((u32)(pt)[3]); return ((u32)(pt)[0] << 24) ^ ((u32)(pt)[1] << 16) ^ ((u32)(pt)[2] << 8) ^ ((u32)(pt)[3]);
}
constexpr void swap_keys(u32* keys, size_t i, size_t j)
{
u32 temp = keys[i];
keys[i] = keys[j];
keys[j] = temp;
}
String AESCipherBlock::to_string() const
{
StringBuilder builder;
for (size_t i = 0; i < BLOCK_SIZE / 8; ++i)
builder.appendf("%02x", m_data[i]);
return builder.build();
}
String AESCipherKey::to_string() const
{
StringBuilder builder;
for (size_t i = 0; i < (rounds() + 1) * 4; ++i)
builder.appendf("%02x", m_rd_keys[i]);
return builder.build();
}
void AESCipherKey::expand_encrypt_key(const StringView& user_key, size_t bits)
{
u32* round_key;
u32 temp;
size_t i { 0 };
ASSERT(!user_key.is_null());
ASSERT(is_valid_key_size(bits));
round_key = round_keys();
if (bits == 128) {
m_rounds = 10;
} else if (bits == 192) {
m_rounds = 12;
} else {
m_rounds = 14;
} }
round_key[0] = get_key(user_key.substring_view(0, 4).characters_without_null_termination()); constexpr void swap_keys(u32* keys, size_t i, size_t j)
round_key[1] = get_key(user_key.substring_view(4, 4).characters_without_null_termination()); {
round_key[2] = get_key(user_key.substring_view(8, 4).characters_without_null_termination()); u32 temp = keys[i];
round_key[3] = get_key(user_key.substring_view(12, 4).characters_without_null_termination()); keys[i] = keys[j];
if (bits == 128) { keys[j] = temp;
for (;;) { }
temp = round_key[3];
// clang-format off String AESCipherBlock::to_string() const
{
StringBuilder builder;
for (size_t i = 0; i < BLOCK_SIZE / 8; ++i)
builder.appendf("%02x", m_data[i]);
return builder.build();
}
String AESCipherKey::to_string() const
{
StringBuilder builder;
for (size_t i = 0; i < (rounds() + 1) * 4; ++i)
builder.appendf("%02x", m_rd_keys[i]);
return builder.build();
}
void AESCipherKey::expand_encrypt_key(const StringView& user_key, size_t bits)
{
u32* round_key;
u32 temp;
size_t i { 0 };
ASSERT(!user_key.is_null());
ASSERT(is_valid_key_size(bits));
round_key = round_keys();
if (bits == 128) {
m_rounds = 10;
} else if (bits == 192) {
m_rounds = 12;
} else {
m_rounds = 14;
}
round_key[0] = get_key(user_key.substring_view(0, 4).characters_without_null_termination());
round_key[1] = get_key(user_key.substring_view(4, 4).characters_without_null_termination());
round_key[2] = get_key(user_key.substring_view(8, 4).characters_without_null_termination());
round_key[3] = get_key(user_key.substring_view(12, 4).characters_without_null_termination());
if (bits == 128) {
for (;;) {
temp = round_key[3];
// clang-format off
round_key[4] = round_key[0] ^ round_key[4] = round_key[0] ^
(Tables::Encode2[(temp >> 16) & 0xff] & 0xff000000) ^ (AESTables::Encode2[(temp >> 16) & 0xff] & 0xff000000) ^
(Tables::Encode3[(temp >> 8) & 0xff] & 0x00ff0000) ^ (AESTables::Encode3[(temp >> 8) & 0xff] & 0x00ff0000) ^
(Tables::Encode0[(temp ) & 0xff] & 0x0000ff00) ^ (AESTables::Encode0[(temp ) & 0xff] & 0x0000ff00) ^
(Tables::Encode1[(temp >> 24) ] & 0x000000ff) ^ Tables::RCON[i]; (AESTables::Encode1[(temp >> 24) ] & 0x000000ff) ^ AESTables::RCON[i];
// clang-format on // clang-format on
round_key[5] = round_key[1] ^ round_key[4]; round_key[5] = round_key[1] ^ round_key[4];
round_key[6] = round_key[2] ^ round_key[5]; round_key[6] = round_key[2] ^ round_key[5];
round_key[7] = round_key[3] ^ round_key[6]; round_key[7] = round_key[3] ^ round_key[6];
++i; ++i;
if (i == 10) if (i == 10)
break; break;
round_key += 4; round_key += 4;
}
return;
} }
return;
}
round_key[4] = get_key(user_key.substring_view(16, 4).characters_without_null_termination()); round_key[4] = get_key(user_key.substring_view(16, 4).characters_without_null_termination());
round_key[5] = get_key(user_key.substring_view(20, 4).characters_without_null_termination()); round_key[5] = get_key(user_key.substring_view(20, 4).characters_without_null_termination());
if (bits == 192) { if (bits == 192) {
for (;;) { for (;;) {
temp = round_key[5]; temp = round_key[5];
// clang-format off // clang-format off
round_key[6] = round_key[0] ^ round_key[6] = round_key[0] ^
(Tables::Encode2[(temp >> 16) & 0xff] & 0xff000000) ^ (AESTables::Encode2[(temp >> 16) & 0xff] & 0xff000000) ^
(Tables::Encode3[(temp >> 8) & 0xff] & 0x00ff0000) ^ (AESTables::Encode3[(temp >> 8) & 0xff] & 0x00ff0000) ^
(Tables::Encode0[(temp ) & 0xff] & 0x0000ff00) ^ (AESTables::Encode0[(temp ) & 0xff] & 0x0000ff00) ^
(Tables::Encode1[(temp >> 24) ] & 0x000000ff) ^ Tables::RCON[i]; (AESTables::Encode1[(temp >> 24) ] & 0x000000ff) ^ AESTables::RCON[i];
// clang-format on // clang-format on
round_key[7] = round_key[1] ^ round_key[6]; round_key[7] = round_key[1] ^ round_key[6];
round_key[8] = round_key[2] ^ round_key[7]; round_key[8] = round_key[2] ^ round_key[7];
round_key[9] = round_key[3] ^ round_key[8]; round_key[9] = round_key[3] ^ round_key[8];
++i; ++i;
if (i == 8) if (i == 8)
break; break;
round_key[10] = round_key[4] ^ round_key[9]; round_key[10] = round_key[4] ^ round_key[9];
round_key[11] = round_key[5] ^ round_key[10]; round_key[11] = round_key[5] ^ round_key[10];
round_key += 6; round_key += 6;
}
return;
} }
return;
}
round_key[6] = get_key(user_key.substring_view(24, 4).characters_without_null_termination()); round_key[6] = get_key(user_key.substring_view(24, 4).characters_without_null_termination());
round_key[7] = get_key(user_key.substring_view(28, 4).characters_without_null_termination()); round_key[7] = get_key(user_key.substring_view(28, 4).characters_without_null_termination());
if (true) { // bits == 256 if (true) { // bits == 256
for (;;) { for (;;) {
temp = round_key[7]; temp = round_key[7];
// clang-format off // clang-format off
round_key[8] = round_key[0] ^ round_key[8] = round_key[0] ^
(Tables::Encode2[(temp >> 16) & 0xff] & 0xff000000) ^ (AESTables::Encode2[(temp >> 16) & 0xff] & 0xff000000) ^
(Tables::Encode3[(temp >> 8) & 0xff] & 0x00ff0000) ^ (AESTables::Encode3[(temp >> 8) & 0xff] & 0x00ff0000) ^
(Tables::Encode0[(temp ) & 0xff] & 0x0000ff00) ^ (AESTables::Encode0[(temp ) & 0xff] & 0x0000ff00) ^
(Tables::Encode1[(temp >> 24) ] & 0x000000ff) ^ Tables::RCON[i]; (AESTables::Encode1[(temp >> 24) ] & 0x000000ff) ^ AESTables::RCON[i];
// clang-format on // clang-format on
round_key[9] = round_key[1] ^ round_key[8]; round_key[9] = round_key[1] ^ round_key[8];
round_key[10] = round_key[2] ^ round_key[9]; round_key[10] = round_key[2] ^ round_key[9];
round_key[11] = round_key[3] ^ round_key[10]; round_key[11] = round_key[3] ^ round_key[10];
++i;
if (i == 7)
break;
temp = round_key[11];
// clang-format off
round_key[12] = round_key[4] ^
(AESTables::Encode2[(temp >> 24) ] & 0xff000000) ^
(AESTables::Encode3[(temp >> 16) & 0xff] & 0x00ff0000) ^
(AESTables::Encode0[(temp >> 8) & 0xff] & 0x0000ff00) ^
(AESTables::Encode1[(temp ) & 0xff] & 0x000000ff) ;
// clang-format on
round_key[13] = round_key[5] ^ round_key[12];
round_key[14] = round_key[6] ^ round_key[13];
round_key[15] = round_key[7] ^ round_key[14];
round_key += 8;
}
return;
}
}
void AESCipherKey::expand_decrypt_key(const StringView& user_key, size_t bits)
{
u32* round_key;
expand_encrypt_key(user_key, bits);
round_key = round_keys();
// reorder round keys
for (size_t i = 0, j = 4 * rounds(); i < j; i += 4, j -= 4) {
swap_keys(round_key, i, j);
swap_keys(round_key, i + 1, j + 1);
swap_keys(round_key, i + 2, j + 2);
swap_keys(round_key, i + 3, j + 3);
}
// apply inverse mix-column to middle rounds
for (size_t i = 1; i < rounds(); ++i) {
round_key += 4;
// clang-format off
round_key[0] =
AESTables::Decode0[AESTables::Encode1[(round_key[0] >> 24) ] & 0xff] ^
AESTables::Decode1[AESTables::Encode1[(round_key[0] >> 16) & 0xff] & 0xff] ^
AESTables::Decode2[AESTables::Encode1[(round_key[0] >> 8) & 0xff] & 0xff] ^
AESTables::Decode3[AESTables::Encode1[(round_key[0] ) & 0xff] & 0xff] ;
round_key[1] =
AESTables::Decode0[AESTables::Encode1[(round_key[1] >> 24) ] & 0xff] ^
AESTables::Decode1[AESTables::Encode1[(round_key[1] >> 16) & 0xff] & 0xff] ^
AESTables::Decode2[AESTables::Encode1[(round_key[1] >> 8) & 0xff] & 0xff] ^
AESTables::Decode3[AESTables::Encode1[(round_key[1] ) & 0xff] & 0xff] ;
round_key[2] =
AESTables::Decode0[AESTables::Encode1[(round_key[2] >> 24) ] & 0xff] ^
AESTables::Decode1[AESTables::Encode1[(round_key[2] >> 16) & 0xff] & 0xff] ^
AESTables::Decode2[AESTables::Encode1[(round_key[2] >> 8) & 0xff] & 0xff] ^
AESTables::Decode3[AESTables::Encode1[(round_key[2] ) & 0xff] & 0xff] ;
round_key[3] =
AESTables::Decode0[AESTables::Encode1[(round_key[3] >> 24) ] & 0xff] ^
AESTables::Decode1[AESTables::Encode1[(round_key[3] >> 16) & 0xff] & 0xff] ^
AESTables::Decode2[AESTables::Encode1[(round_key[3] >> 8) & 0xff] & 0xff] ^
AESTables::Decode3[AESTables::Encode1[(round_key[3] ) & 0xff] & 0xff] ;
// clang-format on
}
}
void AESCipher::encrypt_block(const AESCipherBlock& in, AESCipherBlock& out)
{
u32 s0, s1, s2, s3, t0, t1, t2, t3;
size_t r { 0 };
const auto& dec_key = key();
const auto* round_keys = dec_key.round_keys();
s0 = get_key(in.data().offset_pointer(0)) ^ round_keys[0];
s1 = get_key(in.data().offset_pointer(4)) ^ round_keys[1];
s2 = get_key(in.data().offset_pointer(8)) ^ round_keys[2];
s3 = get_key(in.data().offset_pointer(12)) ^ round_keys[3];
r = dec_key.rounds() >> 1;
// apply the first |r - 1| rounds
auto i { 0 };
for (;;) {
++i; ++i;
if (i == 7) // clang-format off
t0 = AESTables::Encode0[(s0 >> 24) ] ^
AESTables::Encode1[(s1 >> 16) & 0xff] ^
AESTables::Encode2[(s2 >> 8) & 0xff] ^
AESTables::Encode3[(s3 ) & 0xff] ^ round_keys[4];
t1 = AESTables::Encode0[(s1 >> 24) ] ^
AESTables::Encode1[(s2 >> 16) & 0xff] ^
AESTables::Encode2[(s3 >> 8) & 0xff] ^
AESTables::Encode3[(s0 ) & 0xff] ^ round_keys[5];
t2 = AESTables::Encode0[(s2 >> 24) ] ^
AESTables::Encode1[(s3 >> 16) & 0xff] ^
AESTables::Encode2[(s0 >> 8) & 0xff] ^
AESTables::Encode3[(s1 ) & 0xff] ^ round_keys[6];
t3 = AESTables::Encode0[(s3 >> 24) ] ^
AESTables::Encode1[(s0 >> 16) & 0xff] ^
AESTables::Encode2[(s1 >> 8) & 0xff] ^
AESTables::Encode3[(s2 ) & 0xff] ^ round_keys[7];
// clang-format on
round_keys += 8;
--r;
++i;
if (r == 0)
break; break;
temp = round_key[11];
// clang-format off // clang-format off
round_key[12] = round_key[4] ^ s0 = AESTables::Encode0[(t0 >> 24) ] ^
(Tables::Encode2[(temp >> 24) ] & 0xff000000) ^ AESTables::Encode1[(t1 >> 16) & 0xff] ^
(Tables::Encode3[(temp >> 16) & 0xff] & 0x00ff0000) ^ AESTables::Encode2[(t2 >> 8) & 0xff] ^
(Tables::Encode0[(temp >> 8) & 0xff] & 0x0000ff00) ^ AESTables::Encode3[(t3 ) & 0xff] ^ round_keys[0];
(Tables::Encode1[(temp ) & 0xff] & 0x000000ff) ; s1 = AESTables::Encode0[(t1 >> 24) ] ^
AESTables::Encode1[(t2 >> 16) & 0xff] ^
AESTables::Encode2[(t3 >> 8) & 0xff] ^
AESTables::Encode3[(t0 ) & 0xff] ^ round_keys[1];
s2 = AESTables::Encode0[(t2 >> 24) ] ^
AESTables::Encode1[(t3 >> 16) & 0xff] ^
AESTables::Encode2[(t0 >> 8) & 0xff] ^
AESTables::Encode3[(t1 ) & 0xff] ^ round_keys[2];
s3 = AESTables::Encode0[(t3 >> 24) ] ^
AESTables::Encode1[(t0 >> 16) & 0xff] ^
AESTables::Encode2[(t1 >> 8) & 0xff] ^
AESTables::Encode3[(t2 ) & 0xff] ^ round_keys[3];
// clang-format on // clang-format on
round_key[13] = round_key[5] ^ round_key[12];
round_key[14] = round_key[6] ^ round_key[13];
round_key[15] = round_key[7] ^ round_key[14];
round_key += 8;
} }
return;
}
}
void AESCipherKey::expand_decrypt_key(const StringView& user_key, size_t bits) // apply the last round and put the encrypted data into out
{
u32* round_key;
expand_encrypt_key(user_key, bits);
round_key = round_keys();
// reorder round keys
for (size_t i = 0, j = 4 * rounds(); i < j; i += 4, j -= 4) {
swap_keys(round_key, i, j);
swap_keys(round_key, i + 1, j + 1);
swap_keys(round_key, i + 2, j + 2);
swap_keys(round_key, i + 3, j + 3);
}
// apply inverse mix-column to middle rounds
for (size_t i = 1; i < rounds(); ++i) {
round_key += 4;
// clang-format off // clang-format off
round_key[0] = s0 = (AESTables::Encode2[(t0 >> 24) ] & 0xff000000) ^
Tables::Decode0[Tables::Encode1[(round_key[0] >> 24) ] & 0xff] ^ (AESTables::Encode3[(t1 >> 16) & 0xff] & 0x00ff0000) ^
Tables::Decode1[Tables::Encode1[(round_key[0] >> 16) & 0xff] & 0xff] ^ (AESTables::Encode0[(t2 >> 8) & 0xff] & 0x0000ff00) ^
Tables::Decode2[Tables::Encode1[(round_key[0] >> 8) & 0xff] & 0xff] ^ (AESTables::Encode1[(t3 ) & 0xff] & 0x000000ff) ^ round_keys[0];
Tables::Decode3[Tables::Encode1[(round_key[0] ) & 0xff] & 0xff] ;
round_key[1] =
Tables::Decode0[Tables::Encode1[(round_key[1] >> 24) ] & 0xff] ^
Tables::Decode1[Tables::Encode1[(round_key[1] >> 16) & 0xff] & 0xff] ^
Tables::Decode2[Tables::Encode1[(round_key[1] >> 8) & 0xff] & 0xff] ^
Tables::Decode3[Tables::Encode1[(round_key[1] ) & 0xff] & 0xff] ;
round_key[2] =
Tables::Decode0[Tables::Encode1[(round_key[2] >> 24) ] & 0xff] ^
Tables::Decode1[Tables::Encode1[(round_key[2] >> 16) & 0xff] & 0xff] ^
Tables::Decode2[Tables::Encode1[(round_key[2] >> 8) & 0xff] & 0xff] ^
Tables::Decode3[Tables::Encode1[(round_key[2] ) & 0xff] & 0xff] ;
round_key[3] =
Tables::Decode0[Tables::Encode1[(round_key[3] >> 24) ] & 0xff] ^
Tables::Decode1[Tables::Encode1[(round_key[3] >> 16) & 0xff] & 0xff] ^
Tables::Decode2[Tables::Encode1[(round_key[3] >> 8) & 0xff] & 0xff] ^
Tables::Decode3[Tables::Encode1[(round_key[3] ) & 0xff] & 0xff] ;
// clang-format on
}
}
void AESCipher::encrypt_block(const AESCipherBlock& in, AESCipherBlock& out)
{
u32 s0, s1, s2, s3, t0, t1, t2, t3;
size_t r { 0 };
const auto& dec_key = key();
const auto* round_keys = dec_key.round_keys();
s0 = get_key(in.data().offset_pointer(0)) ^ round_keys[0];
s1 = get_key(in.data().offset_pointer(4)) ^ round_keys[1];
s2 = get_key(in.data().offset_pointer(8)) ^ round_keys[2];
s3 = get_key(in.data().offset_pointer(12)) ^ round_keys[3];
r = dec_key.rounds() >> 1;
// apply the first |r - 1| rounds
auto i { 0 };
for (;;) {
++i;
// clang-format off
t0 = Tables::Encode0[(s0 >> 24) ] ^
Tables::Encode1[(s1 >> 16) & 0xff] ^
Tables::Encode2[(s2 >> 8) & 0xff] ^
Tables::Encode3[(s3 ) & 0xff] ^ round_keys[4];
t1 = Tables::Encode0[(s1 >> 24) ] ^
Tables::Encode1[(s2 >> 16) & 0xff] ^
Tables::Encode2[(s3 >> 8) & 0xff] ^
Tables::Encode3[(s0 ) & 0xff] ^ round_keys[5];
t2 = Tables::Encode0[(s2 >> 24) ] ^
Tables::Encode1[(s3 >> 16) & 0xff] ^
Tables::Encode2[(s0 >> 8) & 0xff] ^
Tables::Encode3[(s1 ) & 0xff] ^ round_keys[6];
t3 = Tables::Encode0[(s3 >> 24) ] ^
Tables::Encode1[(s0 >> 16) & 0xff] ^
Tables::Encode2[(s1 >> 8) & 0xff] ^
Tables::Encode3[(s2 ) & 0xff] ^ round_keys[7];
// clang-format on
round_keys += 8;
--r;
++i;
if (r == 0)
break;
// clang-format off
s0 = Tables::Encode0[(t0 >> 24) ] ^
Tables::Encode1[(t1 >> 16) & 0xff] ^
Tables::Encode2[(t2 >> 8) & 0xff] ^
Tables::Encode3[(t3 ) & 0xff] ^ round_keys[0];
s1 = Tables::Encode0[(t1 >> 24) ] ^
Tables::Encode1[(t2 >> 16) & 0xff] ^
Tables::Encode2[(t3 >> 8) & 0xff] ^
Tables::Encode3[(t0 ) & 0xff] ^ round_keys[1];
s2 = Tables::Encode0[(t2 >> 24) ] ^
Tables::Encode1[(t3 >> 16) & 0xff] ^
Tables::Encode2[(t0 >> 8) & 0xff] ^
Tables::Encode3[(t1 ) & 0xff] ^ round_keys[2];
s3 = Tables::Encode0[(t3 >> 24) ] ^
Tables::Encode1[(t0 >> 16) & 0xff] ^
Tables::Encode2[(t1 >> 8) & 0xff] ^
Tables::Encode3[(t2 ) & 0xff] ^ round_keys[3];
// clang-format on
}
// apply the last round and put the encrypted data into out
// clang-format off
s0 = (Tables::Encode2[(t0 >> 24) ] & 0xff000000) ^
(Tables::Encode3[(t1 >> 16) & 0xff] & 0x00ff0000) ^
(Tables::Encode0[(t2 >> 8) & 0xff] & 0x0000ff00) ^
(Tables::Encode1[(t3 ) & 0xff] & 0x000000ff) ^ round_keys[0];
out.put(0, s0); out.put(0, s0);
s1 = (Tables::Encode2[(t1 >> 24) ] & 0xff000000) ^ s1 = (AESTables::Encode2[(t1 >> 24) ] & 0xff000000) ^
(Tables::Encode3[(t2 >> 16) & 0xff] & 0x00ff0000) ^ (AESTables::Encode3[(t2 >> 16) & 0xff] & 0x00ff0000) ^
(Tables::Encode0[(t3 >> 8) & 0xff] & 0x0000ff00) ^ (AESTables::Encode0[(t3 >> 8) & 0xff] & 0x0000ff00) ^
(Tables::Encode1[(t0 ) & 0xff] & 0x000000ff) ^ round_keys[1]; (AESTables::Encode1[(t0 ) & 0xff] & 0x000000ff) ^ round_keys[1];
out.put(4, s1); out.put(4, s1);
s2 = (Tables::Encode2[(t2 >> 24) ] & 0xff000000) ^ s2 = (AESTables::Encode2[(t2 >> 24) ] & 0xff000000) ^
(Tables::Encode3[(t3 >> 16) & 0xff] & 0x00ff0000) ^ (AESTables::Encode3[(t3 >> 16) & 0xff] & 0x00ff0000) ^
(Tables::Encode0[(t0 >> 8) & 0xff] & 0x0000ff00) ^ (AESTables::Encode0[(t0 >> 8) & 0xff] & 0x0000ff00) ^
(Tables::Encode1[(t1 ) & 0xff] & 0x000000ff) ^ round_keys[2]; (AESTables::Encode1[(t1 ) & 0xff] & 0x000000ff) ^ round_keys[2];
out.put(8, s2); out.put(8, s2);
s3 = (Tables::Encode2[(t3 >> 24) ] & 0xff000000) ^ s3 = (AESTables::Encode2[(t3 >> 24) ] & 0xff000000) ^
(Tables::Encode3[(t0 >> 16) & 0xff] & 0x00ff0000) ^ (AESTables::Encode3[(t0 >> 16) & 0xff] & 0x00ff0000) ^
(Tables::Encode0[(t1 >> 8) & 0xff] & 0x0000ff00) ^ (AESTables::Encode0[(t1 >> 8) & 0xff] & 0x0000ff00) ^
(Tables::Encode1[(t2 ) & 0xff] & 0x000000ff) ^ round_keys[3]; (AESTables::Encode1[(t2 ) & 0xff] & 0x000000ff) ^ round_keys[3];
out.put(12, s3); out.put(12, s3);
// clang-format on
}
void AESCipher::decrypt_block(const AESCipherBlock& in, AESCipherBlock& out)
{
u32 s0, s1, s2, s3, t0, t1, t2, t3;
size_t r { 0 };
const auto& dec_key = key();
const auto* round_keys = dec_key.round_keys();
s0 = get_key(in.data().offset_pointer(0)) ^ round_keys[0];
s1 = get_key(in.data().offset_pointer(4)) ^ round_keys[1];
s2 = get_key(in.data().offset_pointer(8)) ^ round_keys[2];
s3 = get_key(in.data().offset_pointer(12)) ^ round_keys[3];
r = dec_key.rounds() >> 1;
// apply the first |r - 1| rounds
for (;;) {
// clang-format off
t0 = Tables::Decode0[(s0 >> 24) ] ^
Tables::Decode1[(s3 >> 16) & 0xff] ^
Tables::Decode2[(s2 >> 8) & 0xff] ^
Tables::Decode3[(s1 ) & 0xff] ^ round_keys[4];
t1 = Tables::Decode0[(s1 >> 24) ] ^
Tables::Decode1[(s0 >> 16) & 0xff] ^
Tables::Decode2[(s3 >> 8) & 0xff] ^
Tables::Decode3[(s2 ) & 0xff] ^ round_keys[5];
t2 = Tables::Decode0[(s2 >> 24) ] ^
Tables::Decode1[(s1 >> 16) & 0xff] ^
Tables::Decode2[(s0 >> 8) & 0xff] ^
Tables::Decode3[(s3 ) & 0xff] ^ round_keys[6];
t3 = Tables::Decode0[(s3 >> 24) ] ^
Tables::Decode1[(s2 >> 16) & 0xff] ^
Tables::Decode2[(s1 >> 8) & 0xff] ^
Tables::Decode3[(s0 ) & 0xff] ^ round_keys[7];
// clang-format on
round_keys += 8;
--r;
if (r == 0)
break;
// clang-format off
s0 = Tables::Decode0[(t0 >> 24) ] ^
Tables::Decode1[(t3 >> 16) & 0xff] ^
Tables::Decode2[(t2 >> 8) & 0xff] ^
Tables::Decode3[(t1 ) & 0xff] ^ round_keys[0];
s1 = Tables::Decode0[(t1 >> 24) ] ^
Tables::Decode1[(t0 >> 16) & 0xff] ^
Tables::Decode2[(t3 >> 8) & 0xff] ^
Tables::Decode3[(t2 ) & 0xff] ^ round_keys[1];
s2 = Tables::Decode0[(t2 >> 24) ] ^
Tables::Decode1[(t1 >> 16) & 0xff] ^
Tables::Decode2[(t0 >> 8) & 0xff] ^
Tables::Decode3[(t3 ) & 0xff] ^ round_keys[2];
s3 = Tables::Decode0[(t3 >> 24) ] ^
Tables::Decode1[(t2 >> 16) & 0xff] ^
Tables::Decode2[(t1 >> 8) & 0xff] ^
Tables::Decode3[(t0 ) & 0xff] ^ round_keys[3];
// clang-format on // clang-format on
} }
// apply the last round and put the decrypted data into out void AESCipher::decrypt_block(const AESCipherBlock& in, AESCipherBlock& out)
// clang-format off {
s0 = ((u32)Tables::Decode4[(t0 >> 24) ] << 24) ^
((u32)Tables::Decode4[(t3 >> 16) & 0xff] << 16) ^ u32 s0, s1, s2, s3, t0, t1, t2, t3;
((u32)Tables::Decode4[(t2 >> 8) & 0xff] << 8) ^ size_t r { 0 };
((u32)Tables::Decode4[(t1 ) & 0xff] ) ^ round_keys[0];
const auto& dec_key = key();
const auto* round_keys = dec_key.round_keys();
s0 = get_key(in.data().offset_pointer(0)) ^ round_keys[0];
s1 = get_key(in.data().offset_pointer(4)) ^ round_keys[1];
s2 = get_key(in.data().offset_pointer(8)) ^ round_keys[2];
s3 = get_key(in.data().offset_pointer(12)) ^ round_keys[3];
r = dec_key.rounds() >> 1;
// apply the first |r - 1| rounds
for (;;) {
// clang-format off
t0 = AESTables::Decode0[(s0 >> 24) ] ^
AESTables::Decode1[(s3 >> 16) & 0xff] ^
AESTables::Decode2[(s2 >> 8) & 0xff] ^
AESTables::Decode3[(s1 ) & 0xff] ^ round_keys[4];
t1 = AESTables::Decode0[(s1 >> 24) ] ^
AESTables::Decode1[(s0 >> 16) & 0xff] ^
AESTables::Decode2[(s3 >> 8) & 0xff] ^
AESTables::Decode3[(s2 ) & 0xff] ^ round_keys[5];
t2 = AESTables::Decode0[(s2 >> 24) ] ^
AESTables::Decode1[(s1 >> 16) & 0xff] ^
AESTables::Decode2[(s0 >> 8) & 0xff] ^
AESTables::Decode3[(s3 ) & 0xff] ^ round_keys[6];
t3 = AESTables::Decode0[(s3 >> 24) ] ^
AESTables::Decode1[(s2 >> 16) & 0xff] ^
AESTables::Decode2[(s1 >> 8) & 0xff] ^
AESTables::Decode3[(s0 ) & 0xff] ^ round_keys[7];
// clang-format on
round_keys += 8;
--r;
if (r == 0)
break;
// clang-format off
s0 = AESTables::Decode0[(t0 >> 24) ] ^
AESTables::Decode1[(t3 >> 16) & 0xff] ^
AESTables::Decode2[(t2 >> 8) & 0xff] ^
AESTables::Decode3[(t1 ) & 0xff] ^ round_keys[0];
s1 = AESTables::Decode0[(t1 >> 24) ] ^
AESTables::Decode1[(t0 >> 16) & 0xff] ^
AESTables::Decode2[(t3 >> 8) & 0xff] ^
AESTables::Decode3[(t2 ) & 0xff] ^ round_keys[1];
s2 = AESTables::Decode0[(t2 >> 24) ] ^
AESTables::Decode1[(t1 >> 16) & 0xff] ^
AESTables::Decode2[(t0 >> 8) & 0xff] ^
AESTables::Decode3[(t3 ) & 0xff] ^ round_keys[2];
s3 = AESTables::Decode0[(t3 >> 24) ] ^
AESTables::Decode1[(t2 >> 16) & 0xff] ^
AESTables::Decode2[(t1 >> 8) & 0xff] ^
AESTables::Decode3[(t0 ) & 0xff] ^ round_keys[3];
// clang-format on
}
// apply the last round and put the decrypted data into out
// clang-format off
s0 = ((u32)AESTables::Decode4[(t0 >> 24) ] << 24) ^
((u32)AESTables::Decode4[(t3 >> 16) & 0xff] << 16) ^
((u32)AESTables::Decode4[(t2 >> 8) & 0xff] << 8) ^
((u32)AESTables::Decode4[(t1 ) & 0xff] ) ^ round_keys[0];
out.put(0, s0); out.put(0, s0);
s1 = ((u32)Tables::Decode4[(t1 >> 24) ] << 24) ^ s1 = ((u32)AESTables::Decode4[(t1 >> 24) ] << 24) ^
((u32)Tables::Decode4[(t0 >> 16) & 0xff] << 16) ^ ((u32)AESTables::Decode4[(t0 >> 16) & 0xff] << 16) ^
((u32)Tables::Decode4[(t3 >> 8) & 0xff] << 8) ^ ((u32)AESTables::Decode4[(t3 >> 8) & 0xff] << 8) ^
((u32)Tables::Decode4[(t2 ) & 0xff] ) ^ round_keys[1]; ((u32)AESTables::Decode4[(t2 ) & 0xff] ) ^ round_keys[1];
out.put(4, s1); out.put(4, s1);
s2 = ((u32)Tables::Decode4[(t2 >> 24) ] << 24) ^ s2 = ((u32)AESTables::Decode4[(t2 >> 24) ] << 24) ^
((u32)Tables::Decode4[(t1 >> 16) & 0xff] << 16) ^ ((u32)AESTables::Decode4[(t1 >> 16) & 0xff] << 16) ^
((u32)Tables::Decode4[(t0 >> 8) & 0xff] << 8) ^ ((u32)AESTables::Decode4[(t0 >> 8) & 0xff] << 8) ^
((u32)Tables::Decode4[(t3 ) & 0xff] ) ^ round_keys[2]; ((u32)AESTables::Decode4[(t3 ) & 0xff] ) ^ round_keys[2];
out.put(8, s2); out.put(8, s2);
s3 = ((u32)Tables::Decode4[(t3 >> 24) ] << 24) ^ s3 = ((u32)AESTables::Decode4[(t3 >> 24) ] << 24) ^
((u32)Tables::Decode4[(t2 >> 16) & 0xff] << 16) ^ ((u32)AESTables::Decode4[(t2 >> 16) & 0xff] << 16) ^
((u32)Tables::Decode4[(t1 >> 8) & 0xff] << 8) ^ ((u32)AESTables::Decode4[(t1 >> 8) & 0xff] << 8) ^
((u32)Tables::Decode4[(t0 ) & 0xff] ) ^ round_keys[3]; ((u32)AESTables::Decode4[(t0 ) & 0xff] ) ^ round_keys[3];
out.put(12, s3); out.put(12, s3);
// clang-format on // clang-format on
} }
void AESCipherBlock::overwrite(const ByteBuffer& buffer) void AESCipherBlock::overwrite(const ByteBuffer& buffer)
{ {
overwrite(buffer.data(), buffer.size()); overwrite(buffer.data(), buffer.size());
} }
void AESCipherBlock::overwrite(const u8* data, size_t length) void AESCipherBlock::overwrite(const u8* data, size_t length)
{ {
ASSERT(length <= m_data.size()); ASSERT(length <= m_data.size());
m_data.overwrite(0, data, length); m_data.overwrite(0, data, length);
if (length < m_data.size()) { if (length < m_data.size()) {
switch (padding_mode()) { switch (padding_mode()) {
case PaddingMode::Null: case PaddingMode::Null:
// fill with zeros // fill with zeros
__builtin_memset(m_data.data() + length, 0, m_data.size() - length); __builtin_memset(m_data.data() + length, 0, m_data.size() - length);
break; break;
case PaddingMode::CMS: case PaddingMode::CMS:
// fill with the length of the padding bytes // fill with the length of the padding bytes
__builtin_memset(m_data.data() + length, m_data.size() - length, m_data.size() - length); __builtin_memset(m_data.data() + length, m_data.size() - length, m_data.size() - length);
break; break;
default: default:
// FIXME: We should handle the rest of the common padding modes // FIXME: We should handle the rest of the common padding modes
ASSERT_NOT_REACHED(); ASSERT_NOT_REACHED();
break;
}
} }
} }
} }
} }

File diff suppressed because it is too large Load diff

View file

@ -28,109 +28,110 @@
#include <AK/ByteBuffer.h> #include <AK/ByteBuffer.h>
#include <AK/Optional.h> #include <AK/Optional.h>
#include <AK/RefPtr.h>
#include <AK/Types.h> #include <AK/Types.h>
namespace Crypto { namespace Crypto {
namespace Cipher {
enum class Intent { enum class Intent {
Encryption, Encryption,
Decryption, Decryption,
}; };
enum class PaddingMode { enum class PaddingMode {
CMS, // RFC 1423 CMS, // RFC 1423
Null, Null,
// FIXME: We do not implement these yet // FIXME: We do not implement these yet
Bit, Bit,
Random, Random,
Space, Space,
ZeroLength, ZeroLength,
}; };
template <typename B, typename T> template <typename B, typename T>
class Cipher; class Cipher;
struct CipherBlock { struct CipherBlock {
public: public:
explicit CipherBlock(PaddingMode mode) explicit CipherBlock(PaddingMode mode)
: m_padding_mode(mode) : m_padding_mode(mode)
{ {
} }
static size_t block_size() { ASSERT_NOT_REACHED(); } static size_t block_size() { ASSERT_NOT_REACHED(); }
virtual ByteBuffer get() const = 0; virtual ByteBuffer get() const = 0;
virtual const ByteBuffer& data() const = 0; virtual const ByteBuffer& data() const = 0;
virtual void overwrite(const ByteBuffer&) = 0; virtual void overwrite(const ByteBuffer&) = 0;
virtual void overwrite(const u8*, size_t) = 0; virtual void overwrite(const u8*, size_t) = 0;
virtual void apply_initialization_vector(const u8* ivec) = 0; virtual void apply_initialization_vector(const u8* ivec) = 0;
PaddingMode padding_mode() const { return m_padding_mode; } PaddingMode padding_mode() const { return m_padding_mode; }
template <typename T> template <typename T>
void put(size_t offset, T value) void put(size_t offset, T value)
{ {
ASSERT(offset + sizeof(T) <= data().size()); ASSERT(offset + sizeof(T) <= data().size());
auto* ptr = data().data() + offset; auto* ptr = data().data() + offset;
auto index { 0 }; auto index { 0 };
ASSERT(sizeof(T) <= 4); ASSERT(sizeof(T) <= 4);
if constexpr (sizeof(T) > 3) if constexpr (sizeof(T) > 3)
ptr[index++] = (u8)(value >> 24); ptr[index++] = (u8)(value >> 24);
if constexpr (sizeof(T) > 2) if constexpr (sizeof(T) > 2)
ptr[index++] = (u8)(value >> 16); ptr[index++] = (u8)(value >> 16);
if constexpr (sizeof(T) > 1) if constexpr (sizeof(T) > 1)
ptr[index++] = (u8)(value >> 8); ptr[index++] = (u8)(value >> 8);
ptr[index] = (u8)value; ptr[index] = (u8)value;
} }
private: private:
virtual ByteBuffer& data() = 0; virtual ByteBuffer& data() = 0;
PaddingMode m_padding_mode; PaddingMode m_padding_mode;
}; };
struct CipherKey { struct CipherKey {
virtual ByteBuffer data() const = 0; virtual ByteBuffer data() const = 0;
static bool is_valid_key_size(size_t) { return false; }; static bool is_valid_key_size(size_t) { return false; };
virtual ~CipherKey() { } virtual ~CipherKey() { }
protected: protected:
virtual void expand_encrypt_key(const ByteBuffer& user_key, size_t bits) = 0; virtual void expand_encrypt_key(const ByteBuffer& user_key, size_t bits) = 0;
virtual void expand_decrypt_key(const ByteBuffer& user_key, size_t bits) = 0; virtual void expand_decrypt_key(const ByteBuffer& user_key, size_t bits) = 0;
size_t bits { 0 }; size_t bits { 0 };
}; };
template <typename KeyT = CipherKey, typename BlockT = CipherBlock> template <typename KeyT = CipherKey, typename BlockT = CipherBlock>
class Cipher { class Cipher {
public: public:
using KeyType = KeyT; using KeyType = KeyT;
using BlockType = BlockT; using BlockType = BlockT;
explicit Cipher<KeyT, BlockT>(PaddingMode mode) explicit Cipher<KeyT, BlockT>(PaddingMode mode)
: m_padding_mode(mode) : m_padding_mode(mode)
{ {
} }
virtual const KeyType& key() const = 0; virtual const KeyType& key() const = 0;
virtual KeyType& key() = 0; virtual KeyType& key() = 0;
static size_t block_size() { return BlockType::block_size(); } static size_t block_size() { return BlockType::block_size(); }
PaddingMode padding_mode() const { return m_padding_mode; } PaddingMode padding_mode() const { return m_padding_mode; }
virtual void encrypt_block(const BlockType& in, BlockType& out) = 0; virtual void encrypt_block(const BlockType& in, BlockType& out) = 0;
virtual void decrypt_block(const BlockType& in, BlockType& out) = 0; virtual void decrypt_block(const BlockType& in, BlockType& out) = 0;
private: private:
PaddingMode m_padding_mode { PaddingMode::CMS }; PaddingMode m_padding_mode;
}; };
} }
} }

View file

@ -29,86 +29,89 @@
#include <LibCrypto/Cipher/Mode/Mode.h> #include <LibCrypto/Cipher/Mode/Mode.h>
namespace Crypto { namespace Crypto {
namespace Cipher {
template <typename T> template <typename T>
class CBC : public Mode<T> { class CBC : public Mode<T> {
public: public:
template <typename... Args> template <typename... Args>
explicit constexpr CBC<T>(Args... args) explicit constexpr CBC<T>(Args... args)
: Mode<T>(args...) : Mode<T>(args...)
{ {
}
virtual Optional<ByteBuffer> encrypt(const ByteBuffer& in, ByteBuffer& out, Optional<ByteBuffer> ivec = {}) override
{
auto length = in.size();
if (length == 0)
return {};
auto& cipher = this->cipher();
// FIXME: We should have two of these encrypt/decrypt functions that
// we SFINAE out based on whether the Cipher mode needs an ivec
ASSERT(ivec.has_value());
const auto* iv = ivec.value().data();
typename T::BlockType block { cipher.padding_mode() };
size_t offset { 0 };
auto block_size = cipher.block_size();
while (length >= block_size) {
block.overwrite(in.slice_view(offset, block_size));
block.apply_initialization_vector(iv);
cipher.encrypt_block(block, block);
out.overwrite(offset, block.get().data(), block_size);
iv = out.offset_pointer(offset);
length -= block_size;
offset += block_size;
} }
if (length > 0) { virtual Optional<ByteBuffer> encrypt(const ByteBuffer& in, ByteBuffer& out, Optional<ByteBuffer> ivec = {}) override
block.overwrite(in.slice_view(offset, length)); {
block.apply_initialization_vector(iv); auto length = in.size();
cipher.encrypt_block(block, block); if (length == 0)
out.overwrite(offset, block.get().data(), block_size); return {};
iv = out.offset_pointer(offset);
auto& cipher = this->cipher();
// FIXME: We should have two of these encrypt/decrypt functions that
// we SFINAE out based on whether the Cipher mode needs an ivec
ASSERT(ivec.has_value());
const auto* iv = ivec.value().data();
typename T::BlockType block { cipher.padding_mode() };
size_t offset { 0 };
auto block_size = cipher.block_size();
while (length >= block_size) {
block.overwrite(in.slice_view(offset, block_size));
block.apply_initialization_vector(iv);
cipher.encrypt_block(block, block);
out.overwrite(offset, block.get().data(), block_size);
iv = out.offset_pointer(offset);
length -= block_size;
offset += block_size;
}
if (length > 0) {
block.overwrite(in.slice_view(offset, length));
block.apply_initialization_vector(iv);
cipher.encrypt_block(block, block);
out.overwrite(offset, block.get().data(), block_size);
iv = out.offset_pointer(offset);
}
return ByteBuffer::copy(iv, block_size);
} }
virtual void decrypt(const ByteBuffer& in, ByteBuffer& out, Optional<ByteBuffer> ivec = {}) override
{
auto length = in.size();
if (length == 0)
return;
return ByteBuffer::copy(iv, block_size); auto& cipher = this->cipher();
}
virtual void decrypt(const ByteBuffer& in, ByteBuffer& out, Optional<ByteBuffer> ivec = {}) override
{
auto length = in.size();
if (length == 0)
return;
auto& cipher = this->cipher(); ASSERT(ivec.has_value());
const auto* iv = ivec.value().data();
ASSERT(ivec.has_value()); auto block_size = cipher.block_size();
const auto* iv = ivec.value().data();
auto block_size = cipher.block_size(); // if the data is not aligned, it's not correct encrypted data
// FIXME (ponder): Should we simply decrypt as much as we can?
ASSERT(length % block_size == 0);
// if the data is not aligned, it's not correct encrypted data typename T::BlockType block { cipher.padding_mode() };
// FIXME (ponder): Should we simply decrypt as much as we can? size_t offset { 0 };
ASSERT(length % block_size == 0);
typename T::BlockType block { cipher.padding_mode() }; while (length > 0) {
size_t offset { 0 }; auto* slice = in.offset_pointer(offset);
block.overwrite(slice, block_size);
while (length > 0) { cipher.decrypt_block(block, block);
auto* slice = in.offset_pointer(offset); block.apply_initialization_vector(iv);
block.overwrite(slice, block_size); auto decrypted = block.get();
cipher.decrypt_block(block, block); out.overwrite(offset, decrypted.data(), decrypted.size());
block.apply_initialization_vector(iv); iv = slice;
auto decrypted = block.get(); length -= block_size;
out.overwrite(offset, decrypted.data(), decrypted.size()); offset += block_size;
iv = slice; }
length -= block_size; this->prune_padding(out);
offset += block_size;
} }
this->prune_padding(out); };
}
}; }
} }

View file

@ -30,68 +30,71 @@
#include <LibCrypto/Cipher/Cipher.h> #include <LibCrypto/Cipher/Cipher.h>
namespace Crypto { namespace Crypto {
namespace Cipher {
template <typename T> template <typename T>
class Mode { class Mode {
public: public:
// FIXME: Somehow communicate that encrypt returns the last initialization vector (if the mode supports it) // FIXME: Somehow communicate that encrypt returns the last initialization vector (if the mode supports it)
virtual Optional<ByteBuffer> encrypt(const ByteBuffer& in, ByteBuffer& out, Optional<ByteBuffer> ivec = {}) = 0; virtual Optional<ByteBuffer> encrypt(const ByteBuffer& in, ByteBuffer& out, Optional<ByteBuffer> ivec = {}) = 0;
virtual void decrypt(const ByteBuffer& in, ByteBuffer& out, Optional<ByteBuffer> ivec = {}) = 0; virtual void decrypt(const ByteBuffer& in, ByteBuffer& out, Optional<ByteBuffer> ivec = {}) = 0;
const T& cipher() const { return m_cipher; } const T& cipher() const { return m_cipher; }
ByteBuffer create_aligned_buffer(size_t input_size) const ByteBuffer create_aligned_buffer(size_t input_size) const
{ {
size_t remainder = (input_size + T::block_size()) % T::block_size(); size_t remainder = (input_size + T::block_size()) % T::block_size();
if (remainder == 0) if (remainder == 0)
return ByteBuffer::create_uninitialized(input_size); return ByteBuffer::create_uninitialized(input_size);
else else
return ByteBuffer::create_uninitialized(input_size + T::block_size() - remainder); return ByteBuffer::create_uninitialized(input_size + T::block_size() - remainder);
} }
protected: protected:
T& cipher() { return m_cipher; } T& cipher() { return m_cipher; }
virtual void prune_padding(ByteBuffer& data) virtual void prune_padding(ByteBuffer& data)
{ {
auto size = data.size(); auto size = data.size();
switch (m_cipher.padding_mode()) { switch (m_cipher.padding_mode()) {
case PaddingMode::CMS: { case PaddingMode::CMS: {
auto maybe_padding_length = data[size - 1]; auto maybe_padding_length = data[size - 1];
if (maybe_padding_length >= T::block_size()) { if (maybe_padding_length >= T::block_size()) {
// cannot be padding (the entire block cannot be padding) // cannot be padding (the entire block cannot be padding)
return;
}
for (auto i = maybe_padding_length; i > 0; --i) {
if (data[size - i] != maybe_padding_length) {
// not padding, part of data
return; return;
} }
for (auto i = maybe_padding_length; i > 0; --i) {
if (data[size - i] != maybe_padding_length) {
// not padding, part of data
return;
}
}
data.trim(size - maybe_padding_length);
break;
}
case PaddingMode::Null: {
while (data[size - 1] == 0)
--size;
data.trim(size);
break;
}
default:
// FIXME: support other padding modes
ASSERT_NOT_REACHED();
break;
} }
data.trim(size - maybe_padding_length);
break;
} }
case PaddingMode::Null: {
while (data[size - 1] == 0)
--size;
data.trim(size);
break;
}
default:
// FIXME: support other padding modes
ASSERT_NOT_REACHED();
break;
}
}
// FIXME: Somehow add a reference version of this // FIXME: Somehow add a reference version of this
template <typename... Args> template <typename... Args>
Mode(Args... args) Mode(Args... args)
: m_cipher(args...) : m_cipher(args...)
{ {
} }
private:
T m_cipher;
};
}
private:
T m_cipher;
};
} }

View file

@ -31,21 +31,24 @@
#include <AK/Types.h> #include <AK/Types.h>
namespace Crypto { namespace Crypto {
namespace Hash {
template<size_t BlockS, typename DigestT> template <size_t BlockS, typename DigestT>
class HashFunction { class HashFunction {
public: public:
static constexpr auto BlockSize = BlockS; static constexpr auto BlockSize = BlockS / 8;
using DigestType = DigestT; static constexpr auto DigestSize = sizeof(DigestT);
static size_t block_size() { return BlockSize; }; using DigestType = DigestT;
static size_t digest_size() { return sizeof(DigestType); };
virtual void update(const u8*, size_t) = 0; static size_t block_size() { return BlockSize; };
virtual void update(const ByteBuffer& buffer) = 0; static size_t digest_size() { return DigestSize; };
virtual void update(const StringView& string) = 0;
virtual DigestType digest() = 0; virtual void update(const u8*, size_t) = 0;
}; virtual void update(const ByteBuffer& buffer) = 0;
virtual void update(const StringView& string) = 0;
virtual DigestType digest() = 0;
};
}
} }

View file

@ -65,167 +65,168 @@ static constexpr inline void round_4(u32& a, u32 b, u32 c, u32 d, u32 x, u32 s,
} }
namespace Crypto { namespace Crypto {
namespace Hash {
void MD5::update(const u8* input, size_t length) void MD5::update(const u8* input, size_t length)
{ {
auto index = (u32)(m_count[0] >> 3) & 0x3f; auto index = (u32)(m_count[0] >> 3) & 0x3f;
size_t offset { 0 }; size_t offset { 0 };
m_count[0] += (u32)length << 3; m_count[0] += (u32)length << 3;
if (m_count[0] < ((u32)length << 3)) { if (m_count[0] < ((u32)length << 3)) {
++m_count[1]; ++m_count[1];
}
m_count[1] += (u32)length >> 29;
auto part_length = 64 - index;
if (length >= part_length) {
m_buffer.overwrite(index, input, part_length);
transform(m_buffer.data());
for (offset = part_length; offset + 63 < length; offset += 64)
transform(&input[offset]);
index = 0;
}
ASSERT(length < part_length || length - offset <= 64);
m_buffer.overwrite(index, &input[offset], length - offset);
} }
m_count[1] += (u32)length >> 29; MD5::DigestType MD5::digest()
{
DigestType digest;
u8 bits[8];
auto part_length = 64 - index; encode(m_count, bits, 8);
if (length >= part_length) {
m_buffer.overwrite(index, input, part_length);
transform(m_buffer.data());
for (offset = part_length; offset + 63 < length; offset += 64) // pad the data to 56%64
transform(&input[offset]); u32 index = (u32)((m_count[0] >> 3) & 0x3f);
u32 pad_length = index < 56 ? 56 - index : 120 - index;
update(MD5Constants::PADDING, pad_length);
index = 0; // append length
update(bits, 8);
// store state (4 registers ABCD)
encode(&m_A, digest.data, 4 * sizeof(m_A));
reset();
return digest;
} }
ASSERT(length < part_length || length - offset <= 64); void MD5::encode(const u32* from, u8* to, size_t length)
m_buffer.overwrite(index, &input[offset], length - offset); {
} for (size_t i = 0, j = 0; j < length; ++i, j += 4) {
MD5::DigestType MD5::digest() to[j] = (u8)(from[i] & 0xff);
{ to[j + 1] = (u8)((from[i] >> 8) & 0xff);
DigestType digest; to[j + 2] = (u8)((from[i] >> 16) & 0xff);
u8 bits[8]; to[j + 3] = (u8)((from[i] >> 24) & 0xff);
}
encode(m_count, bits, 8);
// pad the data to 56%64
u32 index = (u32)((m_count[0] >> 3) & 0x3f);
u32 pad_length = index < 56 ? 56 - index : 120 - index;
update(Constants::PADDING, pad_length);
// append length
update(bits, 8);
// store state (4 registers ABCD)
encode(&m_A, digest.data, 4 * sizeof(m_A));
reset();
return digest;
}
void MD5::encode(const u32* from, u8* to, size_t length)
{
for (size_t i = 0, j = 0; j < length; ++i, j += 4) {
to[j] = (u8)(from[i] & 0xff);
to[j + 1] = (u8)((from[i] >> 8) & 0xff);
to[j + 2] = (u8)((from[i] >> 16) & 0xff);
to[j + 3] = (u8)((from[i] >> 24) & 0xff);
} }
}
void MD5::decode(const u8* from, u32* to, size_t length) void MD5::decode(const u8* from, u32* to, size_t length)
{ {
for (size_t i = 0, j = 0; j < length; ++i, j += 4) for (size_t i = 0, j = 0; j < length; ++i, j += 4)
to[i] = (((u32)from[j]) | (((u32)from[j + 1]) << 8) | (((u32)from[j + 2]) << 16) | (((u32)from[j + 3]) << 24)); to[i] = (((u32)from[j]) | (((u32)from[j + 1]) << 8) | (((u32)from[j + 2]) << 16) | (((u32)from[j + 3]) << 24));
} }
void MD5::transform(const u8* block) void MD5::transform(const u8* block)
{ {
auto a = m_A; auto a = m_A;
auto b = m_B; auto b = m_B;
auto c = m_C; auto c = m_C;
auto d = m_D; auto d = m_D;
u32 x[16]; u32 x[16];
decode(block, x, 64); decode(block, x, 64);
round_1(a, b, c, d, x[0], Constants::S11, 0xd76aa478); // 1 round_1(a, b, c, d, x[0], MD5Constants::S11, 0xd76aa478); // 1
round_1(d, a, b, c, x[1], Constants::S12, 0xe8c7b756); // 2 round_1(d, a, b, c, x[1], MD5Constants::S12, 0xe8c7b756); // 2
round_1(c, d, a, b, x[2], Constants::S13, 0x242070db); // 3 round_1(c, d, a, b, x[2], MD5Constants::S13, 0x242070db); // 3
round_1(b, c, d, a, x[3], Constants::S14, 0xc1bdceee); // 4 round_1(b, c, d, a, x[3], MD5Constants::S14, 0xc1bdceee); // 4
round_1(a, b, c, d, x[4], Constants::S11, 0xf57c0faf); // 5 round_1(a, b, c, d, x[4], MD5Constants::S11, 0xf57c0faf); // 5
round_1(d, a, b, c, x[5], Constants::S12, 0x4787c62a); // 6 round_1(d, a, b, c, x[5], MD5Constants::S12, 0x4787c62a); // 6
round_1(c, d, a, b, x[6], Constants::S13, 0xa8304613); // 7 round_1(c, d, a, b, x[6], MD5Constants::S13, 0xa8304613); // 7
round_1(b, c, d, a, x[7], Constants::S14, 0xfd469501); // 8 round_1(b, c, d, a, x[7], MD5Constants::S14, 0xfd469501); // 8
round_1(a, b, c, d, x[8], Constants::S11, 0x698098d8); // 9 round_1(a, b, c, d, x[8], MD5Constants::S11, 0x698098d8); // 9
round_1(d, a, b, c, x[9], Constants::S12, 0x8b44f7af); // 10 round_1(d, a, b, c, x[9], MD5Constants::S12, 0x8b44f7af); // 10
round_1(c, d, a, b, x[10], Constants::S13, 0xffff5bb1); // 11 round_1(c, d, a, b, x[10], MD5Constants::S13, 0xffff5bb1); // 11
round_1(b, c, d, a, x[11], Constants::S14, 0x895cd7be); // 12 round_1(b, c, d, a, x[11], MD5Constants::S14, 0x895cd7be); // 12
round_1(a, b, c, d, x[12], Constants::S11, 0x6b901122); // 13 round_1(a, b, c, d, x[12], MD5Constants::S11, 0x6b901122); // 13
round_1(d, a, b, c, x[13], Constants::S12, 0xfd987193); // 14 round_1(d, a, b, c, x[13], MD5Constants::S12, 0xfd987193); // 14
round_1(c, d, a, b, x[14], Constants::S13, 0xa679438e); // 15 round_1(c, d, a, b, x[14], MD5Constants::S13, 0xa679438e); // 15
round_1(b, c, d, a, x[15], Constants::S14, 0x49b40821); // 16 round_1(b, c, d, a, x[15], MD5Constants::S14, 0x49b40821); // 16
round_2(a, b, c, d, x[1], Constants::S21, 0xf61e2562); // 17 round_2(a, b, c, d, x[1], MD5Constants::S21, 0xf61e2562); // 17
round_2(d, a, b, c, x[6], Constants::S22, 0xc040b340); // 18 round_2(d, a, b, c, x[6], MD5Constants::S22, 0xc040b340); // 18
round_2(c, d, a, b, x[11], Constants::S23, 0x265e5a51); // 19 round_2(c, d, a, b, x[11], MD5Constants::S23, 0x265e5a51); // 19
round_2(b, c, d, a, x[0], Constants::S24, 0xe9b6c7aa); // 20 round_2(b, c, d, a, x[0], MD5Constants::S24, 0xe9b6c7aa); // 20
round_2(a, b, c, d, x[5], Constants::S21, 0xd62f105d); // 21 round_2(a, b, c, d, x[5], MD5Constants::S21, 0xd62f105d); // 21
round_2(d, a, b, c, x[10], Constants::S22, 0x2441453); // 22 round_2(d, a, b, c, x[10], MD5Constants::S22, 0x2441453); // 22
round_2(c, d, a, b, x[15], Constants::S23, 0xd8a1e681); // 23 round_2(c, d, a, b, x[15], MD5Constants::S23, 0xd8a1e681); // 23
round_2(b, c, d, a, x[4], Constants::S24, 0xe7d3fbc8); // 24 round_2(b, c, d, a, x[4], MD5Constants::S24, 0xe7d3fbc8); // 24
round_2(a, b, c, d, x[9], Constants::S21, 0x21e1cde6); // 25 round_2(a, b, c, d, x[9], MD5Constants::S21, 0x21e1cde6); // 25
round_2(d, a, b, c, x[14], Constants::S22, 0xc33707d6); // 26 round_2(d, a, b, c, x[14], MD5Constants::S22, 0xc33707d6); // 26
round_2(c, d, a, b, x[3], Constants::S23, 0xf4d50d87); // 27 round_2(c, d, a, b, x[3], MD5Constants::S23, 0xf4d50d87); // 27
round_2(b, c, d, a, x[8], Constants::S24, 0x455a14ed); // 28 round_2(b, c, d, a, x[8], MD5Constants::S24, 0x455a14ed); // 28
round_2(a, b, c, d, x[13], Constants::S21, 0xa9e3e905); // 29 round_2(a, b, c, d, x[13], MD5Constants::S21, 0xa9e3e905); // 29
round_2(d, a, b, c, x[2], Constants::S22, 0xfcefa3f8); // 30 round_2(d, a, b, c, x[2], MD5Constants::S22, 0xfcefa3f8); // 30
round_2(c, d, a, b, x[7], Constants::S23, 0x676f02d9); // 31 round_2(c, d, a, b, x[7], MD5Constants::S23, 0x676f02d9); // 31
round_2(b, c, d, a, x[12], Constants::S24, 0x8d2a4c8a); // 32 round_2(b, c, d, a, x[12], MD5Constants::S24, 0x8d2a4c8a); // 32
round_3(a, b, c, d, x[5], Constants::S31, 0xfffa3942); // 33 round_3(a, b, c, d, x[5], MD5Constants::S31, 0xfffa3942); // 33
round_3(d, a, b, c, x[8], Constants::S32, 0x8771f681); // 34 round_3(d, a, b, c, x[8], MD5Constants::S32, 0x8771f681); // 34
round_3(c, d, a, b, x[11], Constants::S33, 0x6d9d6122); // 35 round_3(c, d, a, b, x[11], MD5Constants::S33, 0x6d9d6122); // 35
round_3(b, c, d, a, x[14], Constants::S34, 0xfde5380c); // 36 round_3(b, c, d, a, x[14], MD5Constants::S34, 0xfde5380c); // 36
round_3(a, b, c, d, x[1], Constants::S31, 0xa4beea44); // 37 round_3(a, b, c, d, x[1], MD5Constants::S31, 0xa4beea44); // 37
round_3(d, a, b, c, x[4], Constants::S32, 0x4bdecfa9); // 38 round_3(d, a, b, c, x[4], MD5Constants::S32, 0x4bdecfa9); // 38
round_3(c, d, a, b, x[7], Constants::S33, 0xf6bb4b60); // 39 round_3(c, d, a, b, x[7], MD5Constants::S33, 0xf6bb4b60); // 39
round_3(b, c, d, a, x[10], Constants::S34, 0xbebfbc70); // 40 round_3(b, c, d, a, x[10], MD5Constants::S34, 0xbebfbc70); // 40
round_3(a, b, c, d, x[13], Constants::S31, 0x289b7ec6); // 41 round_3(a, b, c, d, x[13], MD5Constants::S31, 0x289b7ec6); // 41
round_3(d, a, b, c, x[0], Constants::S32, 0xeaa127fa); // 42 round_3(d, a, b, c, x[0], MD5Constants::S32, 0xeaa127fa); // 42
round_3(c, d, a, b, x[3], Constants::S33, 0xd4ef3085); // 43 round_3(c, d, a, b, x[3], MD5Constants::S33, 0xd4ef3085); // 43
round_3(b, c, d, a, x[6], Constants::S34, 0x4881d05); // 44 round_3(b, c, d, a, x[6], MD5Constants::S34, 0x4881d05); // 44
round_3(a, b, c, d, x[9], Constants::S31, 0xd9d4d039); // 45 round_3(a, b, c, d, x[9], MD5Constants::S31, 0xd9d4d039); // 45
round_3(d, a, b, c, x[12], Constants::S32, 0xe6db99e5); // 46 round_3(d, a, b, c, x[12], MD5Constants::S32, 0xe6db99e5); // 46
round_3(c, d, a, b, x[15], Constants::S33, 0x1fa27cf8); // 47 round_3(c, d, a, b, x[15], MD5Constants::S33, 0x1fa27cf8); // 47
round_3(b, c, d, a, x[2], Constants::S34, 0xc4ac5665); // 48 round_3(b, c, d, a, x[2], MD5Constants::S34, 0xc4ac5665); // 48
round_4(a, b, c, d, x[0], Constants::S41, 0xf4292244); // 49 round_4(a, b, c, d, x[0], MD5Constants::S41, 0xf4292244); // 49
round_4(d, a, b, c, x[7], Constants::S42, 0x432aff97); // 50 round_4(d, a, b, c, x[7], MD5Constants::S42, 0x432aff97); // 50
round_4(c, d, a, b, x[14], Constants::S43, 0xab9423a7); // 51 round_4(c, d, a, b, x[14], MD5Constants::S43, 0xab9423a7); // 51
round_4(b, c, d, a, x[5], Constants::S44, 0xfc93a039); // 52 round_4(b, c, d, a, x[5], MD5Constants::S44, 0xfc93a039); // 52
round_4(a, b, c, d, x[12], Constants::S41, 0x655b59c3); // 53 round_4(a, b, c, d, x[12], MD5Constants::S41, 0x655b59c3); // 53
round_4(d, a, b, c, x[3], Constants::S42, 0x8f0ccc92); // 54 round_4(d, a, b, c, x[3], MD5Constants::S42, 0x8f0ccc92); // 54
round_4(c, d, a, b, x[10], Constants::S43, 0xffeff47d); // 55 round_4(c, d, a, b, x[10], MD5Constants::S43, 0xffeff47d); // 55
round_4(b, c, d, a, x[1], Constants::S44, 0x85845dd1); // 56 round_4(b, c, d, a, x[1], MD5Constants::S44, 0x85845dd1); // 56
round_4(a, b, c, d, x[8], Constants::S41, 0x6fa87e4f); // 57 round_4(a, b, c, d, x[8], MD5Constants::S41, 0x6fa87e4f); // 57
round_4(d, a, b, c, x[15], Constants::S42, 0xfe2ce6e0); // 58 round_4(d, a, b, c, x[15], MD5Constants::S42, 0xfe2ce6e0); // 58
round_4(c, d, a, b, x[6], Constants::S43, 0xa3014314); // 59 round_4(c, d, a, b, x[6], MD5Constants::S43, 0xa3014314); // 59
round_4(b, c, d, a, x[13], Constants::S44, 0x4e0811a1); // 60 round_4(b, c, d, a, x[13], MD5Constants::S44, 0x4e0811a1); // 60
round_4(a, b, c, d, x[4], Constants::S41, 0xf7537e82); // 61 round_4(a, b, c, d, x[4], MD5Constants::S41, 0xf7537e82); // 61
round_4(d, a, b, c, x[11], Constants::S42, 0xbd3af235); // 62 round_4(d, a, b, c, x[11], MD5Constants::S42, 0xbd3af235); // 62
round_4(c, d, a, b, x[2], Constants::S43, 0x2ad7d2bb); // 63 round_4(c, d, a, b, x[2], MD5Constants::S43, 0x2ad7d2bb); // 63
round_4(b, c, d, a, x[9], Constants::S44, 0xeb86d391); // 64 round_4(b, c, d, a, x[9], MD5Constants::S44, 0xeb86d391); // 64
m_A += a; m_A += a;
m_B += b; m_B += b;
m_C += c; m_C += c;
m_D += d; m_D += d;
__builtin_memset(x, 0, sizeof(x)); __builtin_memset(x, 0, sizeof(x));
} }
void MD5::reset() void MD5::reset()
{ {
m_A = Constants::init_A; m_A = MD5Constants::init_A;
m_B = Constants::init_B; m_B = MD5Constants::init_B;
m_C = Constants::init_C; m_C = MD5Constants::init_C;
m_D = Constants::init_D; m_D = MD5Constants::init_D;
m_count[0] = 0; m_count[0] = 0;
m_count[1] = 0; m_count[1] = 0;
__builtin_memset(m_data_buffer, 0, sizeof(m_data_buffer)); __builtin_memset(m_data_buffer, 0, sizeof(m_data_buffer));
} }
} }
}

View file

@ -30,78 +30,78 @@
#include <LibCrypto/Hash/HashFunction.h> #include <LibCrypto/Hash/HashFunction.h>
namespace Crypto { namespace Crypto {
namespace Hash {
struct MD5Digest { struct MD5Digest {
u8 data[16]; u8 data[16];
}; };
namespace MD5Constants { namespace MD5Constants {
constexpr u32 init_A = 0x67452301; constexpr u32 init_A = 0x67452301;
constexpr u32 init_B = 0xefcdab89; constexpr u32 init_B = 0xefcdab89;
constexpr u32 init_C = 0x98badcfe; constexpr u32 init_C = 0x98badcfe;
constexpr u32 init_D = 0x10325476; constexpr u32 init_D = 0x10325476;
constexpr u32 S11 = 7; constexpr u32 S11 = 7;
constexpr u32 S12 = 12; constexpr u32 S12 = 12;
constexpr u32 S13 = 17; constexpr u32 S13 = 17;
constexpr u32 S14 = 22; constexpr u32 S14 = 22;
constexpr u32 S21 = 5; constexpr u32 S21 = 5;
constexpr u32 S22 = 9; constexpr u32 S22 = 9;
constexpr u32 S23 = 14; constexpr u32 S23 = 14;
constexpr u32 S24 = 20; constexpr u32 S24 = 20;
constexpr u32 S31 = 4; constexpr u32 S31 = 4;
constexpr u32 S32 = 11; constexpr u32 S32 = 11;
constexpr u32 S33 = 16; constexpr u32 S33 = 16;
constexpr u32 S34 = 23; constexpr u32 S34 = 23;
constexpr u32 S41 = 6; constexpr u32 S41 = 6;
constexpr u32 S42 = 10; constexpr u32 S42 = 10;
constexpr u32 S43 = 15; constexpr u32 S43 = 15;
constexpr u32 S44 = 21; constexpr u32 S44 = 21;
constexpr u8 PADDING[] = { constexpr u8 PADDING[] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0 0
}; };
}
class MD5 final : public HashFunction<16, MD5Digest> {
public:
MD5()
{
m_buffer = ByteBuffer::wrap(m_data_buffer, sizeof(m_data_buffer));
} }
virtual void update(const u8*, size_t) override; class MD5 final : public HashFunction<512, MD5Digest> {
virtual void update(const ByteBuffer& buffer) override { update(buffer.data(), buffer.size()); }; public:
virtual void update(const StringView& string) override { update((const u8*)string.characters_without_null_termination(), string.length()); }; MD5()
virtual DigestType digest() override; {
m_buffer = ByteBuffer::wrap(m_data_buffer, sizeof(m_data_buffer));
}
inline static DigestType hash(const u8* data, size_t length) virtual void update(const u8*, size_t) override;
{ virtual void update(const ByteBuffer& buffer) override { update(buffer.data(), buffer.size()); };
MD5 md5; virtual void update(const StringView& string) override { update((const u8*)string.characters_without_null_termination(), string.length()); };
md5.update(data, length); virtual DigestType digest() override;
return md5.digest();
}
inline static DigestType hash(const ByteBuffer& buffer) { return hash(buffer.data(), buffer.size()); } inline static DigestType hash(const u8* data, size_t length)
inline static DigestType hash(const StringView& buffer) { return hash((const u8*)buffer.characters_without_null_termination(), buffer.length()); } {
MD5 md5;
md5.update(data, length);
return md5.digest();
}
private: inline static DigestType hash(const ByteBuffer& buffer) { return hash(buffer.data(), buffer.size()); }
inline void transform(const u8*); inline static DigestType hash(const StringView& buffer) { return hash((const u8*)buffer.characters_without_null_termination(), buffer.length()); }
inline void reset();
static void encode(const u32* from, u8* to, size_t length); private:
static void decode(const u8* from, u32* to, size_t length); inline void transform(const u8*);
inline void reset();
u32 m_A { Constants::init_A }, m_B { Constants::init_B }, m_C { Constants::init_C }, m_D { Constants::init_D }; static void encode(const u32* from, u8* to, size_t length);
u32 m_count[2] { 0, 0 }; static void decode(const u8* from, u32* to, size_t length);
ByteBuffer m_buffer;
u8 m_data_buffer[64]; u32 m_A { MD5Constants::init_A }, m_B { MD5Constants::init_B }, m_C { MD5Constants::init_C }, m_D { MD5Constants::init_D };
}; u32 m_count[2] { 0, 0 };
ByteBuffer m_buffer;
u8 m_data_buffer[64];
};
} }

View file

@ -68,10 +68,10 @@ void aes_cbc(const char* message, size_t len)
{ {
auto buffer = ByteBuffer::wrap(message, len); auto buffer = ByteBuffer::wrap(message, len);
// FIXME: Take iv as an optional parameter // FIXME: Take iv as an optional parameter
auto iv = ByteBuffer::create_zeroed(Crypto::AESCipher::block_size()); auto iv = ByteBuffer::create_zeroed(Crypto::Cipher::AESCipher::block_size());
if (encrypting) { if (encrypting) {
Crypto::AESCipher::CBCMode cipher(secret_key, key_bits, Crypto::Intent::Encryption); Crypto::Cipher::AESCipher::CBCMode cipher(secret_key, key_bits, Crypto::Cipher::Intent::Encryption);
auto enc = cipher.create_aligned_buffer(buffer.size()); auto enc = cipher.create_aligned_buffer(buffer.size());
cipher.encrypt(buffer, enc, iv); cipher.encrypt(buffer, enc, iv);
@ -79,9 +79,9 @@ void aes_cbc(const char* message, size_t len)
if (binary) if (binary)
printf("%.*s", (int)enc.size(), enc.data()); printf("%.*s", (int)enc.size(), enc.data());
else else
print_buffer(enc, Crypto::AESCipher::block_size()); print_buffer(enc, Crypto::Cipher::AESCipher::block_size());
} else { } else {
Crypto::AESCipher::CBCMode cipher(secret_key, key_bits, Crypto::Intent::Decryption); Crypto::Cipher::AESCipher::CBCMode cipher(secret_key, key_bits, Crypto::Cipher::Intent::Decryption);
auto dec = cipher.create_aligned_buffer(buffer.size()); auto dec = cipher.create_aligned_buffer(buffer.size());
cipher.decrypt(buffer, dec, iv); cipher.decrypt(buffer, dec, iv);
printf("%.*s\n", (int)dec.size(), dec.data()); printf("%.*s\n", (int)dec.size(), dec.data());
@ -90,11 +90,21 @@ void aes_cbc(const char* message, size_t len)
void md5(const char* message, size_t len) void md5(const char* message, size_t len)
{ {
auto digest = Crypto::MD5::hash((const u8*)message, len); auto digest = Crypto::Hash::MD5::hash((const u8*)message, len);
if (binary) if (binary)
printf("%.*s", (int)Crypto::MD5::block_size(), digest.data); printf("%.*s", (int)Crypto::Hash::MD5::digest_size(), digest.data);
else else
print_buffer(ByteBuffer::wrap(digest.data, Crypto::MD5::block_size()), Crypto::MD5::block_size()); print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::MD5::digest_size()), -1);
}
void hmac_md5(const char* message, size_t len)
{
Crypto::Authentication::HMAC<Crypto::Hash::MD5> hmac(secret_key);
auto mac = hmac.process((const u8*)message, len);
if (binary)
printf("%.*s", (int)hmac.DigestSize, mac.data);
else
print_buffer(ByteBuffer::wrap(mac.data, hmac.DigestSize), -1);
} }
auto main(int argc, char** argv) -> int auto main(int argc, char** argv) -> int
@ -103,7 +113,7 @@ auto main(int argc, char** argv) -> int
Core::ArgsParser parser; Core::ArgsParser parser;
parser.add_positional_argument(mode, "mode to operate in ('list' to see modes and descriptions)", "mode"); parser.add_positional_argument(mode, "mode to operate in ('list' to see modes and descriptions)", "mode");
parser.add_option(secret_key, "Set the secret key (must be key-bits bits)", "secret-key", 'k', "secret key"); parser.add_option(secret_key, "Set the secret key", "secret-key", 'k', "secret key");
parser.add_option(key_bits, "Size of the key", "key-bits", 'b', "key-bits"); parser.add_option(key_bits, "Size of the key", "key-bits", 'b', "key-bits");
parser.add_option(filename, "Read from file", "file", 'f', "from file"); parser.add_option(filename, "Read from file", "file", 'f', "from file");
parser.add_option(binary, "Force binary output", "force-binary", 0); parser.add_option(binary, "Force binary output", "force-binary", 0);
@ -143,7 +153,7 @@ auto main(int argc, char** argv) -> int
if (run_tests) if (run_tests)
return aes_cbc_tests(); return aes_cbc_tests();
if (!Crypto::AESCipher::KeyType::is_valid_key_size(key_bits)) { if (!Crypto::Cipher::AESCipher::KeyType::is_valid_key_size(key_bits)) {
printf("Invalid key size for AES: %d\n", key_bits); printf("Invalid key size for AES: %d\n", key_bits);
return 1; return 1;
} }
@ -199,13 +209,13 @@ void aes_cbc_test_encrypt()
auto test_it = [](auto& cipher, auto& result) { auto test_it = [](auto& cipher, auto& result) {
auto in = "This is a test! This is another test!"_b; auto in = "This is a test! This is another test!"_b;
auto out = cipher.create_aligned_buffer(in.size()); auto out = cipher.create_aligned_buffer(in.size());
auto iv = ByteBuffer::create_zeroed(Crypto::AESCipher::block_size()); auto iv = ByteBuffer::create_zeroed(Crypto::Cipher::AESCipher::block_size());
cipher.encrypt(in, out, iv); cipher.encrypt(in, out, iv);
if (out.size() != sizeof(result)) if (out.size() != sizeof(result))
FAIL(size mismatch); FAIL(size mismatch);
else if (memcmp(out.data(), result, out.size()) != 0) { else if (memcmp(out.data(), result, out.size()) != 0) {
FAIL(invalid data); FAIL(invalid data);
print_buffer(out, Crypto::AESCipher::block_size()); print_buffer(out, Crypto::Cipher::AESCipher::block_size());
} else } else
PASS; PASS;
}; };
@ -217,7 +227,7 @@ void aes_cbc_test_encrypt()
0x8b, 0xd3, 0x70, 0x45, 0xf0, 0x79, 0x65, 0xca, 0xb9, 0x03, 0x88, 0x72, 0x1c, 0xdd, 0xab, 0x8b, 0xd3, 0x70, 0x45, 0xf0, 0x79, 0x65, 0xca, 0xb9, 0x03, 0x88, 0x72, 0x1c, 0xdd, 0xab,
0x45, 0x6b, 0x1c 0x45, 0x6b, 0x1c
}; };
Crypto::AESCipher::CBCMode cipher("WellHelloFriends", 128, Crypto::Intent::Encryption); Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriends", 128, Crypto::Cipher::Intent::Encryption);
test_it(cipher, result); test_it(cipher, result);
} }
{ {
@ -228,7 +238,7 @@ void aes_cbc_test_encrypt()
0x68, 0x51, 0x09, 0xd7, 0x3b, 0x48, 0x1b, 0x8a, 0xd3, 0x50, 0x09, 0xba, 0xfc, 0xde, 0x11, 0x68, 0x51, 0x09, 0xd7, 0x3b, 0x48, 0x1b, 0x8a, 0xd3, 0x50, 0x09, 0xba, 0xfc, 0xde, 0x11,
0xe0, 0x3f, 0xcb 0xe0, 0x3f, 0xcb
}; };
Crypto::AESCipher::CBCMode cipher("Well Hello Friends! whf!", 192, Crypto::Intent::Encryption); Crypto::Cipher::AESCipher::CBCMode cipher("Well Hello Friends! whf!", 192, Crypto::Cipher::Intent::Encryption);
test_it(cipher, result); test_it(cipher, result);
} }
{ {
@ -239,7 +249,7 @@ void aes_cbc_test_encrypt()
0x47, 0x9f, 0xc2, 0x21, 0xe6, 0x19, 0x62, 0xc3, 0x75, 0xca, 0xab, 0x2d, 0x18, 0xa1, 0x54, 0x47, 0x9f, 0xc2, 0x21, 0xe6, 0x19, 0x62, 0xc3, 0x75, 0xca, 0xab, 0x2d, 0x18, 0xa1, 0x54,
0xd1, 0x41, 0xe6 0xd1, 0x41, 0xe6
}; };
Crypto::AESCipher::CBCMode cipher("WellHelloFriendsWellHelloFriends", 256, Crypto::Intent::Encryption); Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriendsWellHelloFriends", 256, Crypto::Cipher::Intent::Encryption);
test_it(cipher, result); test_it(cipher, result);
} }
// TODO: Test non-CMS padding options // TODO: Test non-CMS padding options
@ -250,14 +260,14 @@ void aes_cbc_test_decrypt()
auto true_value = "This is a test! This is another test!"; auto true_value = "This is a test! This is another test!";
auto in = ByteBuffer::copy(result, result_len); auto in = ByteBuffer::copy(result, result_len);
auto out = cipher.create_aligned_buffer(in.size()); auto out = cipher.create_aligned_buffer(in.size());
auto iv = ByteBuffer::create_zeroed(Crypto::AESCipher::block_size()); auto iv = ByteBuffer::create_zeroed(Crypto::Cipher::AESCipher::block_size());
cipher.decrypt(in, out, iv); cipher.decrypt(in, out, iv);
if (out.size() != strlen(true_value)) { if (out.size() != strlen(true_value)) {
FAIL(size mismatch); FAIL(size mismatch);
printf("Expected %zu bytes but got %zu\n", strlen(true_value), out.size()); printf("Expected %zu bytes but got %zu\n", strlen(true_value), out.size());
} else if (memcmp(out.data(), true_value, strlen(true_value)) != 0) { } else if (memcmp(out.data(), true_value, strlen(true_value)) != 0) {
FAIL(invalid data); FAIL(invalid data);
print_buffer(out, Crypto::AESCipher::block_size()); print_buffer(out, Crypto::Cipher::AESCipher::block_size());
} else } else
PASS; PASS;
}; };
@ -269,7 +279,7 @@ void aes_cbc_test_decrypt()
0x8b, 0xd3, 0x70, 0x45, 0xf0, 0x79, 0x65, 0xca, 0xb9, 0x03, 0x88, 0x72, 0x1c, 0xdd, 0xab, 0x8b, 0xd3, 0x70, 0x45, 0xf0, 0x79, 0x65, 0xca, 0xb9, 0x03, 0x88, 0x72, 0x1c, 0xdd, 0xab,
0x45, 0x6b, 0x1c 0x45, 0x6b, 0x1c
}; };
Crypto::AESCipher::CBCMode cipher("WellHelloFriends", 128, Crypto::Intent::Decryption); Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriends", 128, Crypto::Cipher::Intent::Decryption);
test_it(cipher, result, 48); test_it(cipher, result, 48);
} }
{ {
@ -280,7 +290,7 @@ void aes_cbc_test_decrypt()
0x68, 0x51, 0x09, 0xd7, 0x3b, 0x48, 0x1b, 0x8a, 0xd3, 0x50, 0x09, 0xba, 0xfc, 0xde, 0x11, 0x68, 0x51, 0x09, 0xd7, 0x3b, 0x48, 0x1b, 0x8a, 0xd3, 0x50, 0x09, 0xba, 0xfc, 0xde, 0x11,
0xe0, 0x3f, 0xcb 0xe0, 0x3f, 0xcb
}; };
Crypto::AESCipher::CBCMode cipher("Well Hello Friends! whf!", 192, Crypto::Intent::Decryption); Crypto::Cipher::AESCipher::CBCMode cipher("Well Hello Friends! whf!", 192, Crypto::Cipher::Intent::Decryption);
test_it(cipher, result, 48); test_it(cipher, result, 48);
} }
{ {
@ -291,7 +301,7 @@ void aes_cbc_test_decrypt()
0x47, 0x9f, 0xc2, 0x21, 0xe6, 0x19, 0x62, 0xc3, 0x75, 0xca, 0xab, 0x2d, 0x18, 0xa1, 0x54, 0x47, 0x9f, 0xc2, 0x21, 0xe6, 0x19, 0x62, 0xc3, 0x75, 0xca, 0xab, 0x2d, 0x18, 0xa1, 0x54,
0xd1, 0x41, 0xe6 0xd1, 0x41, 0xe6
}; };
Crypto::AESCipher::CBCMode cipher("WellHelloFriendsWellHelloFriends", 256, Crypto::Intent::Decryption); Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriendsWellHelloFriends", 256, Crypto::Cipher::Intent::Decryption);
test_it(cipher, result, 48); test_it(cipher, result, 48);
} }
// TODO: Test non-CMS padding options // TODO: Test non-CMS padding options
@ -311,11 +321,11 @@ void md5_test_hash()
u8 result[] { u8 result[] {
0xaf, 0x04, 0x3a, 0x08, 0x94, 0x38, 0x6e, 0x7f, 0xbf, 0x73, 0xe4, 0xaa, 0xf0, 0x8e, 0xee, 0x4c 0xaf, 0x04, 0x3a, 0x08, 0x94, 0x38, 0x6e, 0x7f, 0xbf, 0x73, 0xe4, 0xaa, 0xf0, 0x8e, 0xee, 0x4c
}; };
auto digest = Crypto::MD5::hash("Well hello friends"); auto digest = Crypto::Hash::MD5::hash("Well hello friends");
if (memcmp(result, digest.data, Crypto::MD5::block_size()) != 0) { if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
FAIL(Invalid hash); FAIL(Invalid hash);
print_buffer(ByteBuffer::wrap(digest.data, Crypto::MD5::block_size()), -1); print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::MD5::digest_size()), -1);
} else { } else {
PASS; PASS;
} }
@ -326,11 +336,11 @@ void md5_test_hash()
u8 result[] { u8 result[] {
0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e
}; };
auto digest = Crypto::MD5::hash(""); auto digest = Crypto::Hash::MD5::hash("");
if (memcmp(result, digest.data, Crypto::MD5::block_size()) != 0) { if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
FAIL(Invalid hash); FAIL(Invalid hash);
print_buffer(ByteBuffer::wrap(digest.data, Crypto::MD5::block_size()), -1); print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::MD5::digest_size()), -1);
} else { } else {
PASS; PASS;
} }
@ -340,11 +350,11 @@ void md5_test_hash()
u8 result[] { u8 result[] {
0x0c, 0xc1, 0x75, 0xb9, 0xc0, 0xf1, 0xb6, 0xa8, 0x31, 0xc3, 0x99, 0xe2, 0x69, 0x77, 0x26, 0x61 0x0c, 0xc1, 0x75, 0xb9, 0xc0, 0xf1, 0xb6, 0xa8, 0x31, 0xc3, 0x99, 0xe2, 0x69, 0x77, 0x26, 0x61
}; };
auto digest = Crypto::MD5::hash("a"); auto digest = Crypto::Hash::MD5::hash("a");
if (memcmp(result, digest.data, Crypto::MD5::block_size()) != 0) { if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
FAIL(Invalid hash); FAIL(Invalid hash);
print_buffer(ByteBuffer::wrap(digest.data, Crypto::MD5::block_size()), -1); print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::MD5::digest_size()), -1);
} else { } else {
PASS; PASS;
} }
@ -354,11 +364,11 @@ void md5_test_hash()
u8 result[] { u8 result[] {
0xc3, 0xfc, 0xd3, 0xd7, 0x61, 0x92, 0xe4, 0x00, 0x7d, 0xfb, 0x49, 0x6c, 0xca, 0x67, 0xe1, 0x3b 0xc3, 0xfc, 0xd3, 0xd7, 0x61, 0x92, 0xe4, 0x00, 0x7d, 0xfb, 0x49, 0x6c, 0xca, 0x67, 0xe1, 0x3b
}; };
auto digest = Crypto::MD5::hash("abcdefghijklmnopqrstuvwxyz"); auto digest = Crypto::Hash::MD5::hash("abcdefghijklmnopqrstuvwxyz");
if (memcmp(result, digest.data, Crypto::MD5::block_size()) != 0) { if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
FAIL(Invalid hash); FAIL(Invalid hash);
print_buffer(ByteBuffer::wrap(digest.data, Crypto::MD5::block_size()), -1); print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::MD5::digest_size()), -1);
} else { } else {
PASS; PASS;
} }
@ -368,11 +378,11 @@ void md5_test_hash()
u8 result[] { u8 result[] {
0x57, 0xed, 0xf4, 0xa2, 0x2b, 0xe3, 0xc9, 0x55, 0xac, 0x49, 0xda, 0x2e, 0x21, 0x07, 0xb6, 0x7a 0x57, 0xed, 0xf4, 0xa2, 0x2b, 0xe3, 0xc9, 0x55, 0xac, 0x49, 0xda, 0x2e, 0x21, 0x07, 0xb6, 0x7a
}; };
auto digest = Crypto::MD5::hash("12345678901234567890123456789012345678901234567890123456789012345678901234567890"); auto digest = Crypto::Hash::MD5::hash("12345678901234567890123456789012345678901234567890123456789012345678901234567890");
if (memcmp(result, digest.data, Crypto::MD5::block_size()) != 0) { if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
FAIL(Invalid hash); FAIL(Invalid hash);
print_buffer(ByteBuffer::wrap(digest.data, Crypto::MD5::block_size()), -1); print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::MD5::digest_size()), -1);
} else { } else {
PASS; PASS;
} }
@ -386,21 +396,21 @@ void md5_test_consecutive_updates()
u8 result[] { u8 result[] {
0xaf, 0x04, 0x3a, 0x08, 0x94, 0x38, 0x6e, 0x7f, 0xbf, 0x73, 0xe4, 0xaa, 0xf0, 0x8e, 0xee, 0x4c 0xaf, 0x04, 0x3a, 0x08, 0x94, 0x38, 0x6e, 0x7f, 0xbf, 0x73, 0xe4, 0xaa, 0xf0, 0x8e, 0xee, 0x4c
}; };
Crypto::MD5 md5; Crypto::Hash::MD5 md5;
md5.update("Well"); md5.update("Well");
md5.update(" hello "); md5.update(" hello ");
md5.update("friends"); md5.update("friends");
auto digest = md5.digest(); auto digest = md5.digest();
if (memcmp(result, digest.data, Crypto::MD5::block_size()) != 0) if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0)
FAIL(Invalid hash); FAIL(Invalid hash);
else else
PASS; PASS;
} }
{ {
I_TEST((MD5 Hashing | Reuse)); I_TEST((MD5 Hashing | Reuse));
Crypto::MD5 md5; Crypto::Hash::MD5 md5;
md5.update("Well"); md5.update("Well");
md5.update(" hello "); md5.update(" hello ");
@ -412,7 +422,7 @@ void md5_test_consecutive_updates()
md5.update("friends"); md5.update("friends");
auto digest1 = md5.digest(); auto digest1 = md5.digest();
if (memcmp(digest0.data, digest1.data, Crypto::MD5::block_size()) != 0) if (memcmp(digest0.data, digest1.data, Crypto::Hash::MD5::block_size()) != 0)
FAIL(Cannot reuse); FAIL(Cannot reuse);
else else
PASS; PASS;