mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-22 15:40:19 +00:00
LibGfx/Matrix: Add inverse() and friends
Matrix inversion comes in quite handy in 3D projections, so let's add `Matrix<N,T>.inverse()`. To support matrix inversion, the following methods are added: * `Matrix.first_minor()` See: https://en.wikipedia.org/wiki/Minor_(linear_algebra) * `Matrix.adjugate()` See: https://en.wikipedia.org/wiki/Adjugate_matrix * `Matrix.determinant()` See: https://en.wikipedia.org/wiki/Determinant * `Matrix.inverse()` See: https://en.wikipedia.org/wiki/Invertible_matrix * `Matrix.operator/()` To support easy matrix division :-) Code loosely based on an implementation listed here: https://www.geeksforgeeks.org/adjoint-inverse-matrix/
This commit is contained in:
parent
06c835f857
commit
22d8778437
Notes:
sideshowbarker
2024-07-18 17:28:40 +09:00
Author: https://github.com/gmta Commit: https://github.com/SerenityOS/serenity/commit/22d87784378 Pull-request: https://github.com/SerenityOS/serenity/pull/7427 Reviewed-by: https://github.com/bgianfo
1 changed files with 71 additions and 0 deletions
|
@ -75,6 +75,70 @@ public:
|
|||
return product;
|
||||
}
|
||||
|
||||
constexpr Matrix operator/(T divisor) const
|
||||
{
|
||||
Matrix division;
|
||||
for (size_t i = 0; i < N; ++i) {
|
||||
for (size_t j = 0; j < N; ++j) {
|
||||
division.m_elements[i][j] = m_elements[i][j] / divisor;
|
||||
}
|
||||
}
|
||||
return division;
|
||||
}
|
||||
|
||||
constexpr Matrix adjugate() const
|
||||
{
|
||||
if constexpr (N == 1)
|
||||
return Matrix(1);
|
||||
|
||||
Matrix adjugate;
|
||||
for (size_t i = 0; i < N; ++i) {
|
||||
for (size_t j = 0; j < N; ++j) {
|
||||
int sign = (i + j) % 2 == 0 ? 1 : -1;
|
||||
adjugate.m_elements[j][i] = sign * first_minor(i, j);
|
||||
}
|
||||
}
|
||||
return adjugate;
|
||||
}
|
||||
|
||||
constexpr T determinant() const
|
||||
{
|
||||
if constexpr (N == 1) {
|
||||
return m_elements[0][0];
|
||||
} else {
|
||||
T result = {};
|
||||
int sign = 1;
|
||||
for (size_t j = 0; j < N; ++j) {
|
||||
result += sign * m_elements[0][j] * first_minor(0, j);
|
||||
sign *= -1;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
constexpr T first_minor(size_t skip_row, size_t skip_column) const
|
||||
{
|
||||
static_assert(N > 1);
|
||||
VERIFY(skip_row < N);
|
||||
VERIFY(skip_column < N);
|
||||
|
||||
Matrix<N - 1, T> first_minor;
|
||||
constexpr auto new_size = N - 1;
|
||||
size_t k = 0;
|
||||
|
||||
for (size_t i = 0; i < N; ++i) {
|
||||
for (size_t j = 0; j < N; ++j) {
|
||||
if (i == skip_row || j == skip_column)
|
||||
continue;
|
||||
|
||||
first_minor.elements()[k / new_size][k % new_size] = m_elements[i][j];
|
||||
++k;
|
||||
}
|
||||
}
|
||||
|
||||
return first_minor.determinant();
|
||||
}
|
||||
|
||||
constexpr static Matrix identity()
|
||||
{
|
||||
Matrix result;
|
||||
|
@ -89,6 +153,13 @@ public:
|
|||
return result;
|
||||
}
|
||||
|
||||
constexpr Matrix inverse() const
|
||||
{
|
||||
auto det = determinant();
|
||||
VERIFY(det != 0);
|
||||
return adjugate() / det;
|
||||
}
|
||||
|
||||
constexpr Matrix transpose() const
|
||||
{
|
||||
Matrix result;
|
||||
|
|
Loading…
Reference in a new issue