Kernel: Convert RangeAllocator to using a RedBlackTree internally

This data structure is a much better fit for what is essentially a
sorted list of non-overlapping ranges.

Not using Vector means we no longer have to worry about Vector buffers
getting huge. Only nice & small allocations from now on.
This commit is contained in:
Andreas Kling 2021-07-15 01:40:46 +02:00
parent 980f409003
commit 15ad4a8fd6
Notes: sideshowbarker 2024-07-18 08:59:41 +09:00
2 changed files with 42 additions and 42 deletions

View file

@ -21,14 +21,17 @@ RangeAllocator::RangeAllocator()
void RangeAllocator::initialize_with_range(VirtualAddress base, size_t size) void RangeAllocator::initialize_with_range(VirtualAddress base, size_t size)
{ {
m_total_range = { base, size }; m_total_range = { base, size };
m_available_ranges.append({ base, size }); m_available_ranges.insert(base.get(), Range { base, size });
} }
void RangeAllocator::initialize_from_parent(RangeAllocator const& parent_allocator) void RangeAllocator::initialize_from_parent(RangeAllocator const& parent_allocator)
{ {
ScopedSpinLock lock(parent_allocator.m_lock); ScopedSpinLock lock(parent_allocator.m_lock);
m_total_range = parent_allocator.m_total_range; m_total_range = parent_allocator.m_total_range;
m_available_ranges = parent_allocator.m_available_ranges; m_available_ranges.clear();
for (auto it = parent_allocator.m_available_ranges.begin(); !it.is_end(); ++it) {
m_available_ranges.insert(it.key(), *it);
}
} }
RangeAllocator::~RangeAllocator() RangeAllocator::~RangeAllocator()
@ -44,16 +47,17 @@ void RangeAllocator::dump() const
} }
} }
void RangeAllocator::carve_at_index(int index, Range const& range) void RangeAllocator::carve_at_iterator(auto& it, Range const& range)
{ {
VERIFY(m_lock.is_locked()); VERIFY(m_lock.is_locked());
auto remaining_parts = m_available_ranges[index].carve(range); auto remaining_parts = (*it).carve(range);
VERIFY(remaining_parts.size() >= 1); VERIFY(remaining_parts.size() >= 1);
VERIFY(m_total_range.contains(remaining_parts[0])); VERIFY(m_total_range.contains(remaining_parts[0]));
m_available_ranges[index] = remaining_parts[0]; m_available_ranges.remove(it.key());
m_available_ranges.insert(remaining_parts[0].base().get(), remaining_parts[0]);
if (remaining_parts.size() == 2) { if (remaining_parts.size() == 2) {
VERIFY(m_total_range.contains(remaining_parts[1])); VERIFY(m_total_range.contains(remaining_parts[1]));
m_available_ranges.insert(index + 1, move(remaining_parts[1])); m_available_ranges.insert(remaining_parts[1].base().get(), remaining_parts[1]);
} }
} }
@ -105,8 +109,9 @@ Optional<Range> RangeAllocator::allocate_anywhere(size_t size, size_t alignment)
return {}; return {};
ScopedSpinLock lock(m_lock); ScopedSpinLock lock(m_lock);
for (size_t i = 0; i < m_available_ranges.size(); ++i) {
auto& available_range = m_available_ranges[i]; for (auto it = m_available_ranges.begin(); !it.is_end(); ++it) {
auto& available_range = *it;
// FIXME: This check is probably excluding some valid candidates when using a large alignment. // FIXME: This check is probably excluding some valid candidates when using a large alignment.
if (available_range.size() < (effective_size + alignment)) if (available_range.size() < (effective_size + alignment))
continue; continue;
@ -114,14 +119,15 @@ Optional<Range> RangeAllocator::allocate_anywhere(size_t size, size_t alignment)
FlatPtr initial_base = available_range.base().offset(offset_from_effective_base).get(); FlatPtr initial_base = available_range.base().offset(offset_from_effective_base).get();
FlatPtr aligned_base = round_up_to_power_of_two(initial_base, alignment); FlatPtr aligned_base = round_up_to_power_of_two(initial_base, alignment);
Range allocated_range(VirtualAddress(aligned_base), size); Range const allocated_range(VirtualAddress(aligned_base), size);
VERIFY(m_total_range.contains(allocated_range)); VERIFY(m_total_range.contains(allocated_range));
if (available_range == allocated_range) { if (available_range == allocated_range) {
m_available_ranges.remove(i); m_available_ranges.remove(it.key());
return allocated_range; return allocated_range;
} }
carve_at_index(i, allocated_range); carve_at_iterator(it, allocated_range);
return allocated_range; return allocated_range;
} }
dmesgln("RangeAllocator: Failed to allocate anywhere: size={}, alignment={}", size, alignment); dmesgln("RangeAllocator: Failed to allocate anywhere: size={}, alignment={}", size, alignment);
@ -140,15 +146,15 @@ Optional<Range> RangeAllocator::allocate_specific(VirtualAddress base, size_t si
VERIFY(m_total_range.contains(allocated_range)); VERIFY(m_total_range.contains(allocated_range));
ScopedSpinLock lock(m_lock); ScopedSpinLock lock(m_lock);
for (size_t i = 0; i < m_available_ranges.size(); ++i) { for (auto it = m_available_ranges.begin(); !it.is_end(); ++it) {
auto& available_range = m_available_ranges[i]; auto& available_range = *it;
if (!available_range.contains(base, size)) if (!available_range.contains(base, size))
continue; continue;
if (available_range == allocated_range) { if (available_range == allocated_range) {
m_available_ranges.remove(i); m_available_ranges.remove(it.key());
return allocated_range; return allocated_range;
} }
carve_at_index(i, allocated_range); carve_at_iterator(it, allocated_range);
return allocated_range; return allocated_range;
} }
return {}; return {};
@ -163,33 +169,27 @@ void RangeAllocator::deallocate(Range const& range)
VERIFY(range.base() < range.end()); VERIFY(range.base() < range.end());
VERIFY(!m_available_ranges.is_empty()); VERIFY(!m_available_ranges.is_empty());
size_t nearby_index = 0; Range merged_range = range;
auto* existing_range = binary_search(
m_available_ranges.span(),
range,
&nearby_index,
[](auto& a, auto& b) { return a.base().get() - b.end().get(); });
size_t inserted_index = 0; {
if (existing_range) { // Try merging with preceding range.
existing_range->m_size += range.size(); auto* preceding_range = m_available_ranges.find_largest_not_above(range.base().get());
inserted_index = nearby_index; if (preceding_range && preceding_range->end() == range.base()) {
} else { preceding_range->m_size += range.size();
m_available_ranges.insert_before_matching( merged_range = *preceding_range;
Range(range), [&](auto& entry) { } else {
return entry.base() >= range.end(); m_available_ranges.insert(range.base().get(), range);
}, }
nearby_index, &inserted_index);
} }
if (inserted_index < (m_available_ranges.size() - 1)) { {
// We already merged with previous. Try to merge with next. // Try merging with following range.
auto& inserted_range = m_available_ranges[inserted_index]; auto* following_range = m_available_ranges.find_largest_not_above(range.end().get());
auto& next_range = m_available_ranges[inserted_index + 1]; if (following_range && merged_range.end() == following_range->base()) {
if (inserted_range.end() == next_range.base()) { auto* existing_range = m_available_ranges.find_largest_not_above(range.base().get());
inserted_range.m_size += next_range.size(); VERIFY(existing_range->base() == merged_range.base());
m_available_ranges.remove(inserted_index + 1); existing_range->m_size += following_range->size();
return; m_available_ranges.remove(following_range->base().get());
} }
} }
} }

View file

@ -6,8 +6,8 @@
#pragma once #pragma once
#include <AK/RedBlackTree.h>
#include <AK/Traits.h> #include <AK/Traits.h>
#include <AK/Vector.h>
#include <Kernel/SpinLock.h> #include <Kernel/SpinLock.h>
#include <Kernel/VM/Range.h> #include <Kernel/VM/Range.h>
@ -31,9 +31,9 @@ public:
bool contains(Range const& range) const { return m_total_range.contains(range); } bool contains(Range const& range) const { return m_total_range.contains(range); }
private: private:
void carve_at_index(int, Range const&); void carve_at_iterator(auto&, Range const&);
Vector<Range> m_available_ranges; RedBlackTree<FlatPtr, Range> m_available_ranges;
Range m_total_range; Range m_total_range;
mutable SpinLock<u8> m_lock; mutable SpinLock<u8> m_lock;
}; };