LibJS: Add JS::SafeFunction, like Function but protects captures from GC

SafeFunction automatically registers its closure memory area in a place
where the JS garbage collector can find it.

This means that you can capture JS::Value and arbitrary pointers into
the GC heap in closures, as long as you're using a SafeFunction, and the
GC will not zap those values!

There's probably some performance impact from this, and there's a lot of
things that could be nicer/smarter about it, but let's build something
that ensures safety first, and we can worry about performance later. :^)
This commit is contained in:
Andreas Kling 2022-09-24 11:56:43 +02:00
parent 585072fce3
commit 131c3f50de
Notes: sideshowbarker 2024-07-17 07:16:27 +09:00
3 changed files with 282 additions and 0 deletions

View file

@ -22,6 +22,7 @@ GOOD_LICENSE_HEADER_PATTERN = re.compile(
LICENSE_HEADER_CHECK_EXCLUDES = { LICENSE_HEADER_CHECK_EXCLUDES = {
'AK/Checked.h', 'AK/Checked.h',
'AK/Function.h', 'AK/Function.h',
'Userland/Libraries/LibJS/SafeFunction.h',
'Userland/Libraries/LibC/elf.h', 'Userland/Libraries/LibC/elf.h',
'Userland/Libraries/LibCodeComprehension/Cpp/Tests/', 'Userland/Libraries/LibCodeComprehension/Cpp/Tests/',
'Userland/Libraries/LibCpp/Tests/parser/', 'Userland/Libraries/LibCpp/Tests/parser/',

View file

@ -17,6 +17,7 @@
#include <LibJS/Interpreter.h> #include <LibJS/Interpreter.h>
#include <LibJS/Runtime/Object.h> #include <LibJS/Runtime/Object.h>
#include <LibJS/Runtime/WeakContainer.h> #include <LibJS/Runtime/WeakContainer.h>
#include <LibJS/SafeFunction.h>
#include <setjmp.h> #include <setjmp.h>
#ifdef __serenity__ #ifdef __serenity__
@ -29,6 +30,9 @@ namespace JS {
static int gc_perf_string_id; static int gc_perf_string_id;
#endif #endif
// NOTE: We keep a per-thread list of custom ranges. This hinges on the assumption that there is one JS VM per thread.
static __thread HashMap<FlatPtr*, size_t>* s_custom_ranges_for_conservative_scan = nullptr;
Heap::Heap(VM& vm) Heap::Heap(VM& vm)
: m_vm(vm) : m_vm(vm)
{ {
@ -164,6 +168,16 @@ __attribute__((no_sanitize("address"))) void Heap::gather_conservative_roots(Has
add_possible_value(data); add_possible_value(data);
} }
// NOTE: If we have any custom ranges registered, scan those as well.
// This is where JS::SafeFunction closures get marked.
if (s_custom_ranges_for_conservative_scan) {
for (auto& custom_range : *s_custom_ranges_for_conservative_scan) {
for (size_t i = 0; i < (custom_range.value / sizeof(FlatPtr)); ++i) {
add_possible_value(custom_range.key[i]);
}
}
}
HashTable<HeapBlock*> all_live_heap_blocks; HashTable<HeapBlock*> all_live_heap_blocks;
for_each_block([&](auto& block) { for_each_block([&](auto& block) {
all_live_heap_blocks.set(&block); all_live_heap_blocks.set(&block);
@ -349,4 +363,21 @@ void Heap::uproot_cell(Cell* cell)
m_uprooted_cells.append(cell); m_uprooted_cells.append(cell);
} }
void register_safe_function_closure(void* base, size_t size)
{
if (!s_custom_ranges_for_conservative_scan) {
// FIXME: This per-thread HashMap is currently leaked on thread exit.
s_custom_ranges_for_conservative_scan = new HashMap<FlatPtr*, size_t>;
}
auto result = s_custom_ranges_for_conservative_scan->set(reinterpret_cast<FlatPtr*>(base), size);
VERIFY(result == AK::HashSetResult::InsertedNewEntry);
}
void unregister_safe_function_closure(void* base, size_t)
{
VERIFY(s_custom_ranges_for_conservative_scan);
bool did_remove = s_custom_ranges_for_conservative_scan->remove(reinterpret_cast<FlatPtr*>(base));
VERIFY(did_remove);
}
} }

View file

@ -0,0 +1,250 @@
/*
* Copyright (c) 2016 Apple Inc. All rights reserved.
* Copyright (c) 2021, Gunnar Beutner <gbeutner@serenityos.org>
* Copyright (c) 2022, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Function.h>
namespace JS {
void register_safe_function_closure(void*, size_t);
void unregister_safe_function_closure(void*, size_t);
template<typename>
class SafeFunction;
template<typename Out, typename... In>
class SafeFunction<Out(In...)> {
AK_MAKE_NONCOPYABLE(SafeFunction);
public:
SafeFunction() = default;
SafeFunction(std::nullptr_t)
{
}
~SafeFunction()
{
clear(false);
}
void register_closure()
{
if (auto* wrapper = callable_wrapper())
register_safe_function_closure(wrapper, m_size);
}
void unregister_closure()
{
if (auto* wrapper = callable_wrapper())
unregister_safe_function_closure(wrapper, m_size);
}
template<typename CallableType>
SafeFunction(CallableType&& callable) requires((AK::IsFunctionObject<CallableType> && IsCallableWithArguments<CallableType, In...> && !IsSame<RemoveCVReference<CallableType>, SafeFunction>))
{
init_with_callable(forward<CallableType>(callable));
}
template<typename FunctionType>
SafeFunction(FunctionType f) requires((AK::IsFunctionPointer<FunctionType> && IsCallableWithArguments<RemovePointer<FunctionType>, In...> && !IsSame<RemoveCVReference<FunctionType>, SafeFunction>))
{
init_with_callable(move(f));
}
SafeFunction(SafeFunction&& other)
{
move_from(move(other));
}
// Note: Despite this method being const, a mutable lambda _may_ modify its own captures.
Out operator()(In... in) const
{
auto* wrapper = callable_wrapper();
VERIFY(wrapper);
++m_call_nesting_level;
ScopeGuard guard([this] {
if (--m_call_nesting_level == 0 && m_deferred_clear)
const_cast<SafeFunction*>(this)->clear(false);
});
return wrapper->call(forward<In>(in)...);
}
explicit operator bool() const { return !!callable_wrapper(); }
template<typename CallableType>
SafeFunction& operator=(CallableType&& callable) requires((AK::IsFunctionObject<CallableType> && IsCallableWithArguments<CallableType, In...>))
{
clear();
init_with_callable(forward<CallableType>(callable));
return *this;
}
template<typename FunctionType>
SafeFunction& operator=(FunctionType f) requires((AK::IsFunctionPointer<FunctionType> && IsCallableWithArguments<RemovePointer<FunctionType>, In...>))
{
clear();
if (f)
init_with_callable(move(f));
return *this;
}
SafeFunction& operator=(std::nullptr_t)
{
clear();
return *this;
}
SafeFunction& operator=(SafeFunction&& other)
{
if (this != &other) {
clear();
move_from(move(other));
}
return *this;
}
private:
class CallableWrapperBase {
public:
virtual ~CallableWrapperBase() = default;
// Note: This is not const to allow storing mutable lambdas.
virtual Out call(In...) = 0;
virtual void destroy() = 0;
virtual void init_and_swap(u8*, size_t) = 0;
};
template<typename CallableType>
class CallableWrapper final : public CallableWrapperBase {
AK_MAKE_NONMOVABLE(CallableWrapper);
AK_MAKE_NONCOPYABLE(CallableWrapper);
public:
explicit CallableWrapper(CallableType&& callable)
: m_callable(move(callable))
{
}
Out call(In... in) final override
{
return m_callable(forward<In>(in)...);
}
void destroy() final override
{
delete this;
}
// NOLINTNEXTLINE(readability-non-const-parameter) False positive; destination is used in a placement new expression
void init_and_swap(u8* destination, size_t size) final override
{
VERIFY(size >= sizeof(CallableWrapper));
new (destination) CallableWrapper { move(m_callable) };
}
private:
CallableType m_callable;
};
enum class FunctionKind {
NullPointer,
Inline,
Outline,
};
CallableWrapperBase* callable_wrapper() const
{
switch (m_kind) {
case FunctionKind::NullPointer:
return nullptr;
case FunctionKind::Inline:
return bit_cast<CallableWrapperBase*>(&m_storage);
case FunctionKind::Outline:
return *bit_cast<CallableWrapperBase**>(&m_storage);
default:
VERIFY_NOT_REACHED();
}
}
void clear(bool may_defer = true)
{
bool called_from_inside_function = m_call_nesting_level > 0;
// NOTE: This VERIFY could fail because a Function is destroyed from within itself.
VERIFY(may_defer || !called_from_inside_function);
if (called_from_inside_function && may_defer) {
m_deferred_clear = true;
return;
}
m_deferred_clear = false;
auto* wrapper = callable_wrapper();
if (m_kind == FunctionKind::Inline) {
VERIFY(wrapper);
wrapper->~CallableWrapperBase();
unregister_closure();
} else if (m_kind == FunctionKind::Outline) {
VERIFY(wrapper);
wrapper->destroy();
unregister_closure();
}
m_kind = FunctionKind::NullPointer;
}
template<typename Callable>
void init_with_callable(Callable&& callable)
{
VERIFY(m_call_nesting_level == 0);
VERIFY(m_kind == FunctionKind::NullPointer);
using WrapperType = CallableWrapper<Callable>;
if constexpr (sizeof(WrapperType) > inline_capacity) {
*bit_cast<CallableWrapperBase**>(&m_storage) = new WrapperType(forward<Callable>(callable));
m_kind = FunctionKind::Outline;
} else {
new (m_storage) WrapperType(forward<Callable>(callable));
m_kind = FunctionKind::Inline;
}
m_size = sizeof(WrapperType);
register_closure();
}
void move_from(SafeFunction&& other)
{
VERIFY(m_call_nesting_level == 0);
VERIFY(other.m_call_nesting_level == 0);
VERIFY(m_kind == FunctionKind::NullPointer);
auto* other_wrapper = other.callable_wrapper();
m_size = other.m_size;
switch (other.m_kind) {
case FunctionKind::NullPointer:
break;
case FunctionKind::Inline:
other.unregister_closure();
other_wrapper->init_and_swap(m_storage, inline_capacity);
m_kind = FunctionKind::Inline;
register_closure();
break;
case FunctionKind::Outline:
*bit_cast<CallableWrapperBase**>(&m_storage) = other_wrapper;
m_kind = FunctionKind::Outline;
break;
default:
VERIFY_NOT_REACHED();
}
other.m_kind = FunctionKind::NullPointer;
}
FunctionKind m_kind { FunctionKind::NullPointer };
bool m_deferred_clear { false };
mutable Atomic<u16> m_call_nesting_level { 0 };
size_t m_size { 0 };
// Empirically determined to fit most lambdas and functions.
static constexpr size_t inline_capacity = 4 * sizeof(void*);
alignas(max(alignof(CallableWrapperBase), alignof(CallableWrapperBase*))) u8 m_storage[inline_capacity];
};
}