disasm: Overhaul symbol printing

We now split up symbols into zero-sized symbols that label single
instructions (no need to separate them by newlines; they are used for
jump labels and relocation targets within a larger block of code) and
ranged symbols that label functions. Empty symbols are discarded since
at least RISC-V ELF files contain quite a few of those. Zero-sized
symbols and ranged symbols are handled almost the same, but this way we
can make sure that zero-sized symbols don't interfere with ranged
symbol's newline separation logic. For zero-sized symbols, the "symbol
contains address" logic is updated so they actually contain the one
address they're pointing at, fixing the bug with many "dangling"
zero-sized symbols after a function that contained them. Zero-sized
labels are also no longer printed as a start-end range, since that is
unnecessary visual noise.
This commit is contained in:
kleines Filmröllchen 2023-10-17 19:00:30 +02:00 committed by Andrew Kaster
parent 5dfa660a94
commit 10a1b0de96
Notes: sideshowbarker 2024-07-17 04:10:16 +09:00

View file

@ -6,8 +6,11 @@
#include <AK/Debug.h>
#include <AK/Demangle.h>
#include <AK/IterationDecision.h>
#include <AK/OwnPtr.h>
#include <AK/QuickSort.h>
#include <AK/String.h>
#include <AK/StringBuilder.h>
#include <AK/Vector.h>
#include <LibCore/ArgsParser.h>
#include <LibCore/MappedFile.h>
@ -16,7 +19,24 @@
#include <LibMain/Main.h>
#include <LibX86/Disassembler.h>
#include <LibX86/ELFSymbolProvider.h>
#include <string.h>
struct Symbol {
size_t value { 0 };
size_t size { 0 };
StringView name;
size_t address() const { return value; }
size_t address_end() const { return value + size; }
bool contains(size_t virtual_address) { return (address() <= virtual_address && virtual_address < address_end()) || (size == 0 && address() == virtual_address); }
String format_symbol_address() const
{
if (size > 0)
return MUST(String::formatted("{:p}-{:p}", address(), address_end()));
return MUST(String::formatted("{:p}", address()));
}
};
ErrorOr<int> serenity_main(Main::Arguments args)
{
@ -38,20 +58,12 @@ ErrorOr<int> serenity_main(Main::Arguments args)
asm_size = MUST(file->size());
}
struct Symbol {
size_t value;
size_t size;
StringView name;
size_t address() const { return value; }
size_t address_end() const { return value + size; }
bool contains(size_t virtual_address) { return address() <= virtual_address && virtual_address < address_end(); }
};
Vector<Symbol> symbols;
// Functions and similar symbols.
Vector<Symbol> ranged_symbols;
// Jump labels, relocation targets, etc.
Vector<Symbol> zero_size_symbols;
size_t file_offset = 0;
Vector<Symbol>::Iterator current_symbol = symbols.begin();
OwnPtr<X86::ELFSymbolProvider> symbol_provider; // nullptr for non-ELF disassembly.
OwnPtr<ELF::Image> elf;
if (asm_size >= 4 && strncmp(reinterpret_cast<char const*>(asm_data), "\u007fELF", 4) == 0) {
@ -67,22 +79,36 @@ ErrorOr<int> serenity_main(Main::Arguments args)
file_offset = section.address();
return IterationDecision::Break;
});
symbols.ensure_capacity(elf->symbol_count() + 1);
symbols.append({ 0, 0, StringView() }); // Sentinel.
ranged_symbols.ensure_capacity(elf->symbol_count() + 1);
zero_size_symbols.ensure_capacity(elf->symbol_count() + 1);
// Sentinels:
ranged_symbols.append({ 0, 0, StringView() });
zero_size_symbols.append({ 0, 0, StringView() });
elf->for_each_symbol([&](ELF::Image::Symbol const& symbol) {
symbols.append({ symbol.value(), symbol.size(), symbol.name() });
if (symbol.name().is_empty())
return IterationDecision::Continue;
if (symbol.size() == 0)
zero_size_symbols.append({ symbol.value(), symbol.size(), symbol.name() });
else
ranged_symbols.append({ symbol.value(), symbol.size(), symbol.name() });
return IterationDecision::Continue;
});
quick_sort(symbols, [](auto& a, auto& b) {
auto symbol_order = [](auto& a, auto& b) {
if (a.value != b.value)
return a.value < b.value;
if (a.size != b.size)
return a.size < b.size;
return a.name < b.name;
});
};
quick_sort(ranged_symbols, symbol_order);
quick_sort(zero_size_symbols, symbol_order);
if constexpr (DISASM_DUMP_DEBUG) {
for (size_t i = 0; i < symbols.size(); ++i)
dbgln("{}: {:p}, {}", symbols[i].name, symbols[i].value, symbols[i].size);
for (size_t i = 0; i < ranged_symbols.size(); ++i)
dbgln("{}: {:p}, {}", ranged_symbols[i].name, ranged_symbols[i].value, ranged_symbols[i].size);
for (size_t i = 0; i < zero_size_symbols.size(); ++i)
dbgln("{}: {:p}", zero_size_symbols[i].name, zero_size_symbols[i].value);
}
}
}
@ -90,6 +116,8 @@ ErrorOr<int> serenity_main(Main::Arguments args)
X86::SimpleInstructionStream stream(asm_data, asm_size);
X86::Disassembler disassembler(stream);
Vector<Symbol>::Iterator current_ranged_symbol = ranged_symbols.begin();
Vector<Symbol>::Iterator current_zero_size_symbol = zero_size_symbols.begin();
bool is_first_symbol = true;
bool current_instruction_is_in_symbol = false;
@ -99,38 +127,69 @@ ErrorOr<int> serenity_main(Main::Arguments args)
if (!insn.has_value())
break;
size_t virtual_offset = file_offset + offset;
// Prefix regions of instructions belonging to a symbol with the symbol's name.
// Separate regions of instructions belonging to distinct symbols with newlines,
// and separate regions of instructions not belonging to symbols from regions belonging to symbols with newlines.
// Interesting cases:
// - More than 1 symbol covering a region of instructions (ICF, D1/D2)
// - Symbols of size 0 that don't cover any instructions but are at an address (want to print them, separated from instructions both before and after)
// Invariant: current_symbol is the largest instruction containing insn, or it is the largest instruction that has an address less than the instruction's address.
size_t virtual_offset = file_offset + offset;
if (current_symbol < symbols.end() && !current_symbol->contains(virtual_offset)) {
// Invariant: current_ranged_symbol is the largest instruction containing insn, or it is the largest instruction that has an address less than the instruction's address.
StringBuilder dangling_symbols;
StringBuilder instruction_symbols;
bool needs_separator = false;
if (current_zero_size_symbol < zero_size_symbols.end()) {
// Print "dangling" symbols preceding the current instruction.
while (current_zero_size_symbol + 1 < zero_size_symbols.end() && !(current_zero_size_symbol + 1)->contains(virtual_offset) && (current_zero_size_symbol + 1)->address() <= virtual_offset) {
++current_zero_size_symbol;
if (!is_first_symbol)
dangling_symbols.appendff("\n({} ({}))\n", demangle(current_zero_size_symbol->name), current_zero_size_symbol->format_symbol_address());
}
// Find and print all symbols covering the current instruction.
while (current_zero_size_symbol + 1 < zero_size_symbols.end() && (current_zero_size_symbol + 1)->contains(virtual_offset)) {
if (!is_first_symbol && !current_instruction_is_in_symbol)
needs_separator = true;
++current_zero_size_symbol;
current_instruction_is_in_symbol = true;
instruction_symbols.appendff("{} ({}):\n", demangle(current_zero_size_symbol->name), current_zero_size_symbol->format_symbol_address());
}
}
// Handle ranged symbols separately.
if (current_ranged_symbol < ranged_symbols.end() && !current_ranged_symbol->contains(virtual_offset)) {
if (!is_first_symbol && current_instruction_is_in_symbol) {
// The previous instruction was part of a symbol that doesn't cover the current instruction, so separate it from the current instruction with a newline.
outln();
current_instruction_is_in_symbol = (current_symbol + 1 < symbols.end() && (current_symbol + 1)->contains(virtual_offset));
needs_separator = true;
current_instruction_is_in_symbol = (current_ranged_symbol + 1 < ranged_symbols.end() && (current_ranged_symbol + 1)->contains(virtual_offset));
}
// Try to find symbol covering current instruction, if one exists.
while (current_symbol + 1 < symbols.end() && !(current_symbol + 1)->contains(virtual_offset) && (current_symbol + 1)->address() <= virtual_offset) {
++current_symbol;
// Print "dangling" symbols preceding the current instruction.
while (current_ranged_symbol + 1 < ranged_symbols.end() && !(current_ranged_symbol + 1)->contains(virtual_offset) && (current_ranged_symbol + 1)->address() <= virtual_offset) {
++current_ranged_symbol;
if (!is_first_symbol)
outln("\n({} ({:p}-{:p}))\n", demangle(current_symbol->name), current_symbol->address(), current_symbol->address_end());
dangling_symbols.appendff("\n({} ({}))\n", demangle(current_ranged_symbol->name), current_ranged_symbol->format_symbol_address());
}
while (current_symbol + 1 < symbols.end() && (current_symbol + 1)->contains(virtual_offset)) {
// Find and print all symbols covering the current instruction.
while (current_ranged_symbol + 1 < ranged_symbols.end() && (current_ranged_symbol + 1)->contains(virtual_offset)) {
if (!is_first_symbol && !current_instruction_is_in_symbol)
outln();
++current_symbol;
needs_separator = true;
++current_ranged_symbol;
current_instruction_is_in_symbol = true;
outln("{} ({:p}-{:p}):", demangle(current_symbol->name), current_symbol->address(), current_symbol->address_end());
instruction_symbols.appendff("{} ({}):\n", demangle(current_ranged_symbol->name), current_ranged_symbol->format_symbol_address());
}
is_first_symbol = false;
}
// Insert extra newline after the "dangling" symbols.
if (needs_separator)
outln();
if (auto dangling_symbols_text = TRY(dangling_symbols.to_string()); !dangling_symbols_text.is_empty())
outln("{}", dangling_symbols_text);
if (auto instruction_symbols_text = TRY(instruction_symbols.to_string()); !instruction_symbols_text.is_empty())
out("{}", instruction_symbols_text);
size_t length = insn.value().length();
StringBuilder builder;
builder.appendff("{:p} ", virtual_offset);