ladybird/Userland/Libraries/LibGfx/ImageFormats/JPEGLoader.cpp

2010 lines
77 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2020, the SerenityOS developers.
* Copyright (c) 2022-2023, Lucas Chollet <lucas.chollet@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
2023-01-25 19:19:05 +00:00
#include <AK/Endian.h>
#include <AK/Error.h>
#include <AK/FixedArray.h>
#include <AK/HashMap.h>
#include <AK/Math.h>
2023-01-25 19:19:05 +00:00
#include <AK/MemoryStream.h>
#include <AK/NumericLimits.h>
#include <AK/String.h>
#include <AK/Try.h>
#include <AK/Vector.h>
#include <LibGfx/ImageFormats/JPEGLoader.h>
#include <LibGfx/ImageFormats/JPEGShared.h>
namespace Gfx {
struct MacroblockMeta {
u32 total { 0 };
u32 padded_total { 0 };
u32 hcount { 0 };
u32 vcount { 0 };
u32 hpadded_count { 0 };
u32 vpadded_count { 0 };
};
// In the JPEG format, components are defined first at the frame level, then
// referenced in each scan and aggregated with scan-specific information. The
// two following structs mimic this hierarchy.
struct Component {
// B.2.2 - Frame header syntax
u8 id { 0 }; // Ci, Component identifier
u8 hsample_factor { 1 }; // Hi, Horizontal sampling factor
u8 vsample_factor { 1 }; // Vi, Vertical sampling factor
u8 quantization_table_id { 0 }; // Tqi, Quantization table destination selector
// The JPEG specification does not specify which component corresponds to
// Y, Cb or Cr. This field (actually the index in the parent Vector) will
// act as an authority to determine the *real* component.
// Please note that this is implementation specific.
u8 index { 0 };
};
struct ScanComponent {
// B.2.3 - Scan header syntax
Component& component;
u8 dc_destination_id { 0 }; // Tdj, DC entropy coding table destination selector
u8 ac_destination_id { 0 }; // Taj, AC entropy coding table destination selector
};
struct StartOfFrame {
// Of these, only the first 3 are in mainstream use, and refers to SOF0-2.
enum class FrameType {
Baseline_DCT = 0,
Extended_Sequential_DCT = 1,
Progressive_DCT = 2,
Sequential_Lossless = 3,
Differential_Sequential_DCT = 5,
Differential_Progressive_DCT = 6,
Differential_Sequential_Lossless = 7,
Extended_Sequential_DCT_Arithmetic = 9,
Progressive_DCT_Arithmetic = 10,
Sequential_Lossless_Arithmetic = 11,
Differential_Sequential_DCT_Arithmetic = 13,
Differential_Progressive_DCT_Arithmetic = 14,
Differential_Sequential_Lossless_Arithmetic = 15,
};
FrameType type { FrameType::Baseline_DCT };
u8 precision { 0 };
u16 height { 0 };
u16 width { 0 };
};
struct HuffmanTable {
u8 type { 0 };
u8 destination_id { 0 };
u8 code_counts[16] = { 0 };
Vector<u8> symbols;
Vector<u16> codes;
// Note: The value 8 is chosen quite arbitrarily, the only current constraint
// is that both the symbol and the size fit in an u16. I've tested more
// values but none stand out, and 8 is the value used by libjpeg-turbo.
static constexpr u8 bits_per_cached_code = 8;
static constexpr u8 maximum_bits_per_code = 16;
u8 first_non_cached_code_index {};
void generate_codes()
{
unsigned code = 0;
for (auto number_of_codes : code_counts) {
for (int i = 0; i < number_of_codes; i++)
codes.append(code++);
code <<= 1;
}
generate_lookup_table();
}
struct SymbolAndSize {
u8 symbol {};
u8 size {};
};
ErrorOr<SymbolAndSize> symbol_from_code(u16 code) const
{
static constexpr u8 shift_for_cache = maximum_bits_per_code - bits_per_cached_code;
if (lookup_table[code >> shift_for_cache] != invalid_entry) {
u8 const code_length = lookup_table[code >> shift_for_cache] >> bits_per_cached_code;
return SymbolAndSize { static_cast<u8>(lookup_table[code >> shift_for_cache]), code_length };
}
u64 code_cursor = first_non_cached_code_index;
for (u8 i = HuffmanTable::bits_per_cached_code; i < 16; i++) {
auto const result = code >> (maximum_bits_per_code - 1 - i);
for (u32 j = 0; j < code_counts[i]; j++) {
if (result == codes[code_cursor])
return SymbolAndSize { symbols[code_cursor], static_cast<u8>(i + 1) };
code_cursor++;
}
}
return Error::from_string_literal("This kind of JPEG is not yet supported by the decoder");
}
private:
static constexpr u16 invalid_entry = 0xFF;
void generate_lookup_table()
{
lookup_table.fill(invalid_entry);
u32 code_offset = 0;
for (u8 code_length = 1; code_length <= bits_per_cached_code; code_length++) {
for (u32 i = 0; i < code_counts[code_length - 1]; i++, code_offset++) {
u32 code_key = codes[code_offset] << (bits_per_cached_code - code_length);
for (u8 duplicate_count = 1 << (bits_per_cached_code - code_length); duplicate_count > 0; duplicate_count--) {
lookup_table[code_key] = (code_length << bits_per_cached_code) | symbols[code_offset];
code_key++;
}
}
}
}
Array<u16, 1 << bits_per_cached_code> lookup_table {};
};
class HuffmanStream;
class JPEGStream {
public:
static ErrorOr<JPEGStream> create(NonnullOwnPtr<Stream> stream)
{
Vector<u8> buffer;
TRY(buffer.try_resize(buffer_size));
JPEGStream jpeg_stream { move(stream), move(buffer) };
TRY(jpeg_stream.refill_buffer());
return jpeg_stream;
}
ALWAYS_INLINE ErrorOr<u8> read_u8()
{
if (m_byte_offset == m_current_size)
TRY(refill_buffer());
return m_buffer[m_byte_offset++];
}
ALWAYS_INLINE ErrorOr<u16> read_u16()
{
if (m_saved_marker.has_value())
return m_saved_marker.release_value();
return (static_cast<u16>(TRY(read_u8())) << 8) | TRY(read_u8());
}
ALWAYS_INLINE ErrorOr<void> discard(u64 bytes)
{
auto const discarded_from_buffer = min(m_current_size - m_byte_offset, bytes);
m_byte_offset += discarded_from_buffer;
if (discarded_from_buffer < bytes)
TRY(m_stream->discard(bytes - discarded_from_buffer));
return {};
}
ErrorOr<void> read_until_filled(Bytes bytes)
{
auto const copied = m_buffer.span().slice(m_byte_offset).copy_trimmed_to(bytes);
m_byte_offset += copied;
if (copied < bytes.size())
TRY(m_stream->read_until_filled(bytes.slice(copied)));
return {};
}
Optional<u16>& saved_marker(Badge<HuffmanStream>)
{
return m_saved_marker;
}
u64 byte_offset() const
{
return m_byte_offset;
}
private:
JPEGStream(NonnullOwnPtr<Stream> stream, Vector<u8> buffer)
: m_stream(move(stream))
, m_buffer(move(buffer))
{
}
ErrorOr<void> refill_buffer()
{
VERIFY(m_byte_offset == m_current_size);
m_current_size = TRY(m_stream->read_some(m_buffer.span())).size();
m_byte_offset = 0;
return {};
}
static constexpr auto buffer_size = 4096;
NonnullOwnPtr<Stream> m_stream;
Optional<u16> m_saved_marker {};
Vector<u8> m_buffer {};
u64 m_byte_offset { buffer_size };
u64 m_current_size { buffer_size };
};
class HuffmanStream {
public:
ALWAYS_INLINE ErrorOr<u8> next_symbol(HuffmanTable const& table)
{
u16 const code = TRY(peek_bits(HuffmanTable::maximum_bits_per_code));
auto const symbol_and_size = TRY(table.symbol_from_code(code));
TRY(discard_bits(symbol_and_size.size));
return symbol_and_size.symbol;
}
ALWAYS_INLINE ErrorOr<u16> read_bits(u8 count = 1)
{
if (count > NumericLimits<u16>::digits()) {
dbgln_if(JPEG_DEBUG, "Can't read {} bits at once!", count);
return Error::from_string_literal("Reading too much huffman bits at once");
}
u16 const value = TRY(peek_bits(count));
TRY(discard_bits(count));
return value;
}
ALWAYS_INLINE ErrorOr<u16> peek_bits(u8 count)
{
if (count == 0)
return 0;
if (count + m_bit_offset > bits_in_reservoir)
TRY(refill_reservoir());
auto const mask = NumericLimits<u16>::max() >> (NumericLimits<u16>::digits() - count);
return static_cast<u16>((m_bit_reservoir >> (bits_in_reservoir - m_bit_offset - count)) & mask);
}
ALWAYS_INLINE ErrorOr<void> discard_bits(u8 count)
{
m_bit_offset += count;
if (m_bit_offset > bits_in_reservoir) {
// FIXME: I can't find a test case for that so let's leave it for later
// instead of inserting an hard-to-find bug.
TODO();
}
return {};
}
ErrorOr<void> advance_to_byte_boundary()
{
if (auto remainder = m_bit_offset % 8; remainder != 0)
TRY(discard_bits(bits_per_byte - remainder));
return {};
}
HuffmanStream(JPEGStream& stream)
: jpeg_stream(stream)
{
}
private:
ALWAYS_INLINE ErrorOr<void> refill_reservoir()
{
auto const bytes_needed = m_bit_offset / bits_per_byte;
u8 bytes_added {};
auto const append_byte = [&](u8 byte) {
m_last_byte_was_ff = false;
m_bit_reservoir <<= 8;
m_bit_reservoir |= byte;
m_bit_offset -= 8;
bytes_added++;
};
do {
// Note: We fake zeroes when we have reached another segment
// It allows us to continue peeking seamlessly.
u8 const next_byte = jpeg_stream.saved_marker({}).has_value() ? 0 : TRY(jpeg_stream.read_u8());
if (m_last_byte_was_ff) {
if (next_byte == 0xFF)
continue;
if (next_byte == 0x00) {
append_byte(0xFF);
continue;
}
Marker const marker = 0xFF00 | next_byte;
if (marker < JPEG_RST0 || marker > JPEG_RST7) {
// Note: The only way to know that we reached the end of a segment is to read
// the marker of the following one. So we store it for later use.
jpeg_stream.saved_marker({}) = marker;
m_last_byte_was_ff = false;
continue;
}
}
if (next_byte == 0xFF) {
m_last_byte_was_ff = true;
continue;
}
append_byte(next_byte);
} while (bytes_added < bytes_needed);
return {};
}
JPEGStream& jpeg_stream;
using Reservoir = u64;
static constexpr auto bits_per_byte = 8;
static constexpr auto bits_in_reservoir = sizeof(Reservoir) * bits_per_byte;
Reservoir m_bit_reservoir {};
u8 m_bit_offset { bits_in_reservoir };
bool m_last_byte_was_ff { false };
};
struct ICCMultiChunkState {
u8 seen_number_of_icc_chunks { 0 };
FixedArray<ByteBuffer> chunks;
};
struct Scan {
Scan(HuffmanStream stream)
: huffman_stream(stream)
{
}
// B.2.3 - Scan header syntax
Vector<ScanComponent, 4> components;
u8 spectral_selection_start {}; // Ss
u8 spectral_selection_end {}; // Se
u8 successive_approximation_high {}; // Ah
u8 successive_approximation_low {}; // Al
HuffmanStream huffman_stream;
u64 end_of_bands_run_count { 0 };
// See the note on Figure B.4 - Scan header syntax
bool are_components_interleaved() const
{
return components.size() != 1;
}
};
enum class ColorTransform {
// https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-T.872-201206-I!!PDF-E&type=items
// 6.5.3 - APP14 marker segment for colour encoding
CmykOrRgb = 0,
YCbCr = 1,
YCCK = 2,
};
struct JPEGLoadingContext {
JPEGLoadingContext(JPEGStream jpeg_stream)
: stream(move(jpeg_stream))
{
}
static ErrorOr<NonnullOwnPtr<JPEGLoadingContext>> create(NonnullOwnPtr<Stream> stream)
{
auto jpeg_stream = TRY(JPEGStream::create(move(stream)));
return make<JPEGLoadingContext>(move(jpeg_stream));
}
enum State {
NotDecoded = 0,
Error,
FrameDecoded,
HeaderDecoded,
BitmapDecoded
};
State state { State::NotDecoded };
Array<Optional<Array<u16, 64>>, 4> quantization_tables {};
StartOfFrame frame;
u8 hsample_factor { 0 };
u8 vsample_factor { 0 };
Optional<Scan> current_scan {};
Vector<Component, 4> components;
RefPtr<Gfx::Bitmap> bitmap;
u16 dc_restart_interval { 0 };
HashMap<u8, HuffmanTable> dc_tables;
HashMap<u8, HuffmanTable> ac_tables;
Array<i16, 4> previous_dc_values {};
MacroblockMeta mblock_meta;
JPEGStream stream;
Optional<ColorTransform> color_transform {};
Optional<ICCMultiChunkState> icc_multi_chunk_state;
Optional<ByteBuffer> icc_data;
};
static inline auto* get_component(Macroblock& block, unsigned component)
{
switch (component) {
case 0:
return block.y;
case 1:
return block.cb;
case 2:
return block.cr;
case 3:
return block.k;
default:
VERIFY_NOT_REACHED();
}
}
static ErrorOr<void> refine_coefficient(Scan& scan, auto& coefficient)
{
// G.1.2.3 - Coding model for subsequent scans of successive approximation
// See the correction bit from rule b.
u8 const bit = TRY(scan.huffman_stream.read_bits(1));
if (bit == 1)
coefficient |= 1 << scan.successive_approximation_low;
return {};
}
enum class JPEGDecodingMode {
Sequential,
Progressive
};
template<JPEGDecodingMode DecodingMode>
static ErrorOr<void> add_dc(JPEGLoadingContext& context, Macroblock& macroblock, ScanComponent const& scan_component)
{
auto maybe_table = context.dc_tables.get(scan_component.dc_destination_id);
if (!maybe_table.has_value()) {
dbgln_if(JPEG_DEBUG, "Unable to find a DC table with id: {}", scan_component.dc_destination_id);
return Error::from_string_literal("Unable to find corresponding DC table");
}
auto& dc_table = maybe_table.value();
auto& scan = *context.current_scan;
auto* select_component = get_component(macroblock, scan_component.component.index);
auto& coefficient = select_component[0];
if (DecodingMode == JPEGDecodingMode::Progressive && scan.successive_approximation_high > 0) {
TRY(refine_coefficient(scan, coefficient));
return {};
}
// For DC coefficients, symbol encodes the length of the coefficient.
auto dc_length = TRY(scan.huffman_stream.next_symbol(dc_table));
// F.1.2.1.2 - Defining Huffman tables for the DC coefficients
// F.1.5.1 - Structure of DC code table for 12-bit sample precision
if ((context.frame.precision == 8 && dc_length > 11)
|| (context.frame.precision == 12 && dc_length > 15)) {
dbgln_if(JPEG_DEBUG, "DC coefficient too long: {}!", dc_length);
return Error::from_string_literal("DC coefficient too long");
}
// DC coefficients are encoded as the difference between previous and current DC values.
i16 dc_diff = TRY(scan.huffman_stream.read_bits(dc_length));
// If MSB in diff is 0, the difference is -ve. Otherwise +ve.
if (dc_length != 0 && dc_diff < (1 << (dc_length - 1)))
dc_diff -= (1 << dc_length) - 1;
auto& previous_dc = context.previous_dc_values[scan_component.component.index];
previous_dc += dc_diff;
coefficient = previous_dc << scan.successive_approximation_low;
return {};
}
template<JPEGDecodingMode DecodingMode>
static ALWAYS_INLINE ErrorOr<bool> read_eob(Scan& scan, u32 symbol)
{
// OPTIMIZATION: This is a fast path for sequential JPEGs, these
// only supports EOB with a value of one block.
if constexpr (DecodingMode == JPEGDecodingMode::Sequential)
return symbol == 0x00;
// G.1.2.2 - Progressive encoding of AC coefficients with Huffman coding
// Note: We also use it for non-progressive encoding as it supports both EOB and ZRL
if (auto const eob = symbol & 0x0F; eob == 0 && symbol != JPEG_ZRL) {
// We encountered an EOB marker
auto const eob_base = symbol >> 4;
auto const additional_value = TRY(scan.huffman_stream.read_bits(eob_base));
scan.end_of_bands_run_count = additional_value + (1 << eob_base) - 1;
// end_of_bands_run_count is decremented at the end of `build_macroblocks`.
// And we need to now that we reached End of Block in `add_ac`.
++scan.end_of_bands_run_count;
return true;
}
return false;
}
static bool is_progressive(StartOfFrame::FrameType frame_type)
{
return frame_type == StartOfFrame::FrameType::Progressive_DCT
|| frame_type == StartOfFrame::FrameType::Progressive_DCT_Arithmetic
|| frame_type == StartOfFrame::FrameType::Differential_Progressive_DCT
|| frame_type == StartOfFrame::FrameType::Differential_Progressive_DCT_Arithmetic;
}
template<JPEGDecodingMode DecodingMode>
static ErrorOr<void> add_ac(JPEGLoadingContext& context, Macroblock& macroblock, ScanComponent const& scan_component)
{
auto maybe_table = context.ac_tables.get(scan_component.ac_destination_id);
if (!maybe_table.has_value()) {
dbgln_if(JPEG_DEBUG, "Unable to find a AC table with id: {}", scan_component.ac_destination_id);
return Error::from_string_literal("Unable to find corresponding AC table");
}
auto& ac_table = maybe_table.value();
auto* select_component = get_component(macroblock, scan_component.component.index);
auto& scan = *context.current_scan;
// Compute the AC coefficients.
// 0th coefficient is the dc, which is already handled
auto first_coefficient = max(1, scan.spectral_selection_start);
u32 to_skip = 0;
Optional<u8> saved_symbol;
Optional<u8> saved_bit_for_rule_a;
bool in_zrl = false;
for (int j = first_coefficient; j <= scan.spectral_selection_end; ++j) {
auto& coefficient = select_component[zigzag_map[j]];
// AC symbols encode 2 pieces of information, the high 4 bits represent
// number of zeroes to be stuffed before reading the coefficient. Low 4
// bits represent the magnitude of the coefficient.
if (!in_zrl && scan.end_of_bands_run_count == 0 && !saved_symbol.has_value()) {
saved_symbol = TRY(scan.huffman_stream.next_symbol(ac_table));
if (!TRY(read_eob<DecodingMode>(scan, *saved_symbol))) {
to_skip = *saved_symbol >> 4;
in_zrl = *saved_symbol == JPEG_ZRL;
if (in_zrl) {
to_skip++;
saved_symbol.clear();
}
if constexpr (DecodingMode == JPEGDecodingMode::Sequential) {
j += to_skip - 1;
to_skip = 0;
in_zrl = false;
continue;
}
if constexpr (DecodingMode == JPEGDecodingMode::Progressive) {
if (!in_zrl && scan.successive_approximation_high != 0) {
// G.1.2.3 - Coding model for subsequent scans of successive approximation
// Bit sign from rule a
saved_bit_for_rule_a = TRY(scan.huffman_stream.read_bits(1));
}
}
} else if constexpr (DecodingMode == JPEGDecodingMode::Sequential) {
break;
}
}
if constexpr (DecodingMode == JPEGDecodingMode::Progressive) {
if (coefficient != 0) {
TRY(refine_coefficient(scan, coefficient));
continue;
}
}
if (to_skip > 0) {
--to_skip;
if (to_skip == 0)
in_zrl = false;
continue;
}
if (scan.end_of_bands_run_count > 0)
continue;
if (DecodingMode == JPEGDecodingMode::Progressive && scan.successive_approximation_high != 0) {
// G.1.2.3 - Coding model for subsequent scans of successive approximation
if (auto const low_bits = *saved_symbol & 0x0F; low_bits != 1) {
dbgln_if(JPEG_DEBUG, "AC coefficient low bits isn't equal to 1: {}!", low_bits);
return Error::from_string_literal("AC coefficient low bits isn't equal to 1");
}
coefficient = (*saved_bit_for_rule_a == 0 ? -1 : 1) << scan.successive_approximation_low;
saved_bit_for_rule_a.clear();
} else {
// F.1.2.2 - Huffman encoding of AC coefficients
u8 const coeff_length = *saved_symbol & 0x0F;
// F.1.2.2.1 - Structure of AC code table
// F.1.5.2 - Structure of AC code table for 12-bit sample precision
if ((context.frame.precision == 8 && coeff_length > 10)
|| (context.frame.precision == 12 && coeff_length > 14)) {
dbgln_if(JPEG_DEBUG, "AC coefficient too long: {}!", coeff_length);
return Error::from_string_literal("AC coefficient too long");
}
if (coeff_length != 0) {
i32 ac_coefficient = TRY(scan.huffman_stream.read_bits(coeff_length));
if (ac_coefficient < (1 << (coeff_length - 1)))
ac_coefficient -= (1 << coeff_length) - 1;
coefficient = ac_coefficient * (1 << scan.successive_approximation_low);
}
}
saved_symbol.clear();
}
if (to_skip > 0) {
dbgln_if(JPEG_DEBUG, "Run-length exceeded boundaries. Cursor: {}, Skipping: {}!", scan.spectral_selection_end + to_skip, to_skip);
return Error::from_string_literal("Run-length exceeded boundaries");
}
return {};
}
/**
* Build the macroblocks possible by reading single (MCU) subsampled pair of CbCr.
* Depending on the sampling factors, we may not see triples of y, cb, cr in that
* order. If sample factors differ from one, we'll read more than one block of y-
* coefficients before we get to read a cb-cr block.
* In the function below, `hcursor` and `vcursor` denote the location of the block
* we're building in the macroblock matrix. `vfactor_i` and `hfactor_i` are cursors
* that iterate over the vertical and horizontal subsampling factors, respectively.
* When we finish one iteration of the innermost loop, we'll have the coefficients
* of one of the components of block at position `macroblock_index`. When the outermost
* loop finishes first iteration, we'll have all the luminance coefficients for all the
* macroblocks that share the chrominance data. Next two iterations (assuming that
* we are dealing with three components) will fill up the blocks with chroma data.
*/
template<JPEGDecodingMode DecodingMode>
static ErrorOr<void> build_macroblocks(JPEGLoadingContext& context, Vector<Macroblock>& macroblocks, u32 hcursor, u32 vcursor)
{
for (auto const& scan_component : context.current_scan->components) {
for (u8 vfactor_i = 0; vfactor_i < scan_component.component.vsample_factor; vfactor_i++) {
for (u8 hfactor_i = 0; hfactor_i < scan_component.component.hsample_factor; hfactor_i++) {
// A.2.3 - Interleaved order
u32 macroblock_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
if (!context.current_scan->are_components_interleaved()) {
macroblock_index = vcursor * context.mblock_meta.hpadded_count + (hfactor_i + (hcursor * scan_component.component.vsample_factor) + (vfactor_i * scan_component.component.hsample_factor));
// A.2.4 Completion of partial MCU
// If the component is [and only if!] to be interleaved, the encoding process
// shall also extend the number of samples by one or more additional blocks.
// Horizontally
if (macroblock_index >= context.mblock_meta.hcount && macroblock_index % context.mblock_meta.hpadded_count >= context.mblock_meta.hcount)
continue;
// Vertically
if (macroblock_index >= context.mblock_meta.hpadded_count * context.mblock_meta.vcount)
continue;
}
Macroblock& block = macroblocks[macroblock_index];
if constexpr (DecodingMode == JPEGDecodingMode::Sequential) {
TRY(add_dc<DecodingMode>(context, block, scan_component));
TRY(add_ac<DecodingMode>(context, block, scan_component));
} else {
if (context.current_scan->spectral_selection_start == 0)
TRY(add_dc<DecodingMode>(context, block, scan_component));
if (context.current_scan->spectral_selection_end != 0)
TRY(add_ac<DecodingMode>(context, block, scan_component));
// G.1.2.2 - Progressive encoding of AC coefficients with Huffman coding
if (context.current_scan->end_of_bands_run_count > 0) {
--context.current_scan->end_of_bands_run_count;
continue;
}
}
}
}
}
return {};
}
static bool is_dct_based(StartOfFrame::FrameType frame_type)
{
return frame_type == StartOfFrame::FrameType::Baseline_DCT
|| frame_type == StartOfFrame::FrameType::Extended_Sequential_DCT
|| frame_type == StartOfFrame::FrameType::Progressive_DCT
|| frame_type == StartOfFrame::FrameType::Differential_Sequential_DCT
|| frame_type == StartOfFrame::FrameType::Differential_Progressive_DCT
|| frame_type == StartOfFrame::FrameType::Progressive_DCT_Arithmetic
|| frame_type == StartOfFrame::FrameType::Differential_Sequential_DCT_Arithmetic
|| frame_type == StartOfFrame::FrameType::Differential_Progressive_DCT_Arithmetic;
}
static void reset_decoder(JPEGLoadingContext& context)
{
// G.1.2.2 - Progressive encoding of AC coefficients with Huffman coding
context.current_scan->end_of_bands_run_count = 0;
// E.2.4 Control procedure for decoding a restart interval
if (is_dct_based(context.frame.type)) {
context.previous_dc_values = {};
return;
}
VERIFY_NOT_REACHED();
}
static ErrorOr<void> decode_huffman_stream(JPEGLoadingContext& context, Vector<Macroblock>& macroblocks)
{
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
u32 i = vcursor * context.mblock_meta.hpadded_count + hcursor;
auto& huffman_stream = context.current_scan->huffman_stream;
if (context.dc_restart_interval > 0) {
if (i != 0 && i % (context.dc_restart_interval * context.vsample_factor * context.hsample_factor) == 0) {
reset_decoder(context);
// Restart markers are stored in byte boundaries. Advance the huffman stream cursor to
// the 0th bit of the next byte.
TRY(huffman_stream.advance_to_byte_boundary());
// Skip the restart marker (RSTn).
TRY(huffman_stream.discard_bits(8));
}
}
auto result = [&]() {
if (is_progressive(context.frame.type))
return build_macroblocks<JPEGDecodingMode::Progressive>(context, macroblocks, hcursor, vcursor);
return build_macroblocks<JPEGDecodingMode::Sequential>(context, macroblocks, hcursor, vcursor);
}();
if (result.is_error()) {
if constexpr (JPEG_DEBUG) {
dbgln("Failed to build Macroblock {}: {}", i, result.error());
dbgln("Huffman stream byte offset {}", context.stream.byte_offset());
}
return result.release_error();
}
}
}
return {};
}
static bool is_frame_marker(Marker const marker)
{
// B.1.1.3 - Marker assignments
bool const is_sof_marker = marker >= JPEG_SOF0 && marker <= JPEG_SOF15;
// Start of frame markers are valid for JPEG_SOF0 to JPEG_SOF15 except number 4, 8 (reserved) and 12.
bool const is_defined_marker = marker != JPEG_DHT && marker != 0xFFC8 && marker != JPEG_DAC;
return is_sof_marker && is_defined_marker;
}
static inline bool is_supported_marker(Marker const marker)
{
if (marker >= JPEG_APPN0 && marker <= JPEG_APPN15) {
if (marker != JPEG_APPN0 && marker != JPEG_APPN14)
dbgln_if(JPEG_DEBUG, "{:#04x} not supported yet. The decoder may fail!", marker);
return true;
}
if (marker >= JPEG_RESERVED1 && marker <= JPEG_RESERVEDD)
return true;
if (marker >= JPEG_RST0 && marker <= JPEG_RST7)
return true;
switch (marker) {
case JPEG_COM:
case JPEG_DHP:
case JPEG_EXP:
case JPEG_DHT:
case JPEG_DQT:
case JPEG_DRI:
case JPEG_EOI:
case JPEG_SOF0:
case JPEG_SOF1:
case JPEG_SOF2:
case JPEG_SOI:
case JPEG_SOS:
return true;
}
if (is_frame_marker(marker))
dbgln_if(JPEG_DEBUG, "Decoding this frame-type (SOF{}) is not currently supported. Decoder will fail!", marker & 0xf);
return false;
}
static inline ErrorOr<Marker> read_marker_at_cursor(JPEGStream& stream)
{
u16 marker = TRY(stream.read_u16());
if (marker == 0xFFFF) {
u8 next { 0xFF };
while (next == 0xFF)
next = TRY(stream.read_u8());
marker = 0xFF00 | next;
}
if (is_supported_marker(marker))
return marker;
return Error::from_string_literal("Reached an unsupported marker");
}
static ErrorOr<u16> read_effective_chunk_size(JPEGStream& stream)
{
// The stored chunk size includes the size of `stored_size` itself.
u16 const stored_size = TRY(stream.read_u16());
if (stored_size < 2)
return Error::from_string_literal("Stored chunk size is too small");
return stored_size - 2;
}
static ErrorOr<void> read_start_of_scan(JPEGStream& stream, JPEGLoadingContext& context)
{
// B.2.3 - Scan header syntax
if (context.state < JPEGLoadingContext::State::FrameDecoded)
return Error::from_string_literal("SOS found before reading a SOF");
[[maybe_unused]] u16 const bytes_to_read = TRY(read_effective_chunk_size(stream));
u8 const component_count = TRY(stream.read_u8());
Scan current_scan(HuffmanStream { context.stream });
Optional<u8> last_read;
u8 component_read = 0;
for (auto& component : context.components) {
// See the Csj paragraph:
// [...] the ordering in the scan header shall follow the ordering in the frame header.
if (component_read == component_count)
break;
if (!last_read.has_value())
last_read = TRY(stream.read_u8());
if (component.id != *last_read)
continue;
u8 const table_ids = TRY(stream.read_u8());
current_scan.components.empend(component, static_cast<u8>(table_ids >> 4), static_cast<u8>(table_ids & 0x0F));
component_read++;
last_read.clear();
}
if constexpr (JPEG_DEBUG) {
StringBuilder builder;
TRY(builder.try_append("Components in scan: "sv));
for (auto const& scan_component : current_scan.components) {
TRY(builder.try_append(TRY(String::number(scan_component.component.id))));
TRY(builder.try_append(' '));
}
dbgln(builder.string_view());
}
current_scan.spectral_selection_start = TRY(stream.read_u8());
current_scan.spectral_selection_end = TRY(stream.read_u8());
auto const successive_approximation = TRY(stream.read_u8());
current_scan.successive_approximation_high = successive_approximation >> 4;
current_scan.successive_approximation_low = successive_approximation & 0x0F;
2023-01-21 08:20:45 +00:00
dbgln_if(JPEG_DEBUG, "Start of Selection: {}, End of Selection: {}, Successive Approximation High: {}, Successive Approximation Low: {}",
2023-02-23 04:55:32 +00:00
current_scan.spectral_selection_start,
current_scan.spectral_selection_end,
current_scan.successive_approximation_high,
current_scan.successive_approximation_low);
2023-02-23 04:55:32 +00:00
if (current_scan.spectral_selection_start > 63 || current_scan.spectral_selection_end > 63 || current_scan.successive_approximation_high > 13 || current_scan.successive_approximation_low > 13) {
dbgln_if(JPEG_DEBUG, "ERROR! Start of Selection: {}, End of Selection: {}, Successive Approximation High: {}, Successive Approximation Low: {}!",
current_scan.spectral_selection_start,
current_scan.spectral_selection_end,
current_scan.successive_approximation_high,
current_scan.successive_approximation_low);
return Error::from_string_literal("Spectral selection is not [0,63] or successive approximation is not null");
}
context.current_scan = move(current_scan);
return {};
}
static ErrorOr<void> read_restart_interval(JPEGStream& stream, JPEGLoadingContext& context)
{
// B.2.4.4 - Restart interval definition syntax
u16 bytes_to_read = TRY(read_effective_chunk_size(stream));
if (bytes_to_read != 2) {
dbgln_if(JPEG_DEBUG, "Malformed DRI marker found!");
return Error::from_string_literal("Malformed DRI marker found");
}
context.dc_restart_interval = TRY(stream.read_u16());
return {};
}
static ErrorOr<void> read_huffman_table(JPEGStream& stream, JPEGLoadingContext& context)
{
// B.2.4.2 - Huffman table-specification syntax
u16 bytes_to_read = TRY(read_effective_chunk_size(stream));
while (bytes_to_read > 0) {
HuffmanTable table;
u8 const table_info = TRY(stream.read_u8());
u8 const table_type = table_info >> 4;
u8 const table_destination_id = table_info & 0x0F;
if (table_type > 1) {
dbgln_if(JPEG_DEBUG, "Unrecognized huffman table: {}!", table_type);
return Error::from_string_literal("Unrecognized huffman table");
}
if ((context.frame.type == StartOfFrame::FrameType::Baseline_DCT && table_destination_id > 1)
|| (context.frame.type != StartOfFrame::FrameType::Baseline_DCT && table_destination_id > 3)) {
dbgln_if(JPEG_DEBUG, "Invalid huffman table destination id: {}!", table_destination_id);
return Error::from_string_literal("Invalid huffman table destination id");
}
table.type = table_type;
table.destination_id = table_destination_id;
u32 total_codes = 0;
// Read code counts. At each index K, the value represents the number of K+1 bit codes in this header.
for (int i = 0; i < 16; i++) {
if (i == HuffmanTable::bits_per_cached_code)
table.first_non_cached_code_index = total_codes;
u8 const count = TRY(stream.read_u8());
total_codes += count;
table.code_counts[i] = count;
}
table.codes.ensure_capacity(total_codes);
table.symbols.ensure_capacity(total_codes);
// Read symbols. Read X bytes, where X is the sum of the counts of codes read in the previous step.
for (u32 i = 0; i < total_codes; i++) {
u8 symbol = TRY(stream.read_u8());
table.symbols.append(symbol);
}
table.generate_codes();
auto& huffman_table = table.type == 0 ? context.dc_tables : context.ac_tables;
huffman_table.set(table.destination_id, table);
bytes_to_read -= 1 + 16 + total_codes;
}
if (bytes_to_read != 0) {
dbgln_if(JPEG_DEBUG, "Extra bytes detected in huffman header!");
return Error::from_string_literal("Extra bytes detected in huffman header");
}
return {};
}
static ErrorOr<void> read_icc_profile(JPEGStream& stream, JPEGLoadingContext& context, int bytes_to_read)
{
// https://www.color.org/technotes/ICC-Technote-ProfileEmbedding.pdf, page 5, "JFIF".
if (bytes_to_read <= 2)
return Error::from_string_literal("icc marker too small");
auto chunk_sequence_number = TRY(stream.read_u8()); // 1-based
auto number_of_chunks = TRY(stream.read_u8());
bytes_to_read -= 2;
if (!context.icc_multi_chunk_state.has_value())
context.icc_multi_chunk_state.emplace(ICCMultiChunkState { 0, TRY(FixedArray<ByteBuffer>::create(number_of_chunks)) });
auto& chunk_state = context.icc_multi_chunk_state;
if (chunk_state->seen_number_of_icc_chunks >= number_of_chunks)
return Error::from_string_literal("Too many ICC chunks");
if (chunk_state->chunks.size() != number_of_chunks)
return Error::from_string_literal("Inconsistent number of total ICC chunks");
if (chunk_sequence_number == 0)
return Error::from_string_literal("ICC chunk sequence number not 1 based");
u8 index = chunk_sequence_number - 1;
if (index >= chunk_state->chunks.size())
return Error::from_string_literal("ICC chunk sequence number larger than number of chunks");
if (!chunk_state->chunks[index].is_empty())
return Error::from_string_literal("Duplicate ICC chunk at sequence number");
chunk_state->chunks[index] = TRY(ByteBuffer::create_zeroed(bytes_to_read));
TRY(stream.read_until_filled(chunk_state->chunks[index]));
chunk_state->seen_number_of_icc_chunks++;
if (chunk_state->seen_number_of_icc_chunks != chunk_state->chunks.size())
return {};
if (number_of_chunks == 1) {
context.icc_data = move(chunk_state->chunks[0]);
return {};
}
size_t total_size = 0;
for (auto const& chunk : chunk_state->chunks)
total_size += chunk.size();
auto icc_bytes = TRY(ByteBuffer::create_zeroed(total_size));
size_t start = 0;
for (auto const& chunk : chunk_state->chunks) {
memcpy(icc_bytes.data() + start, chunk.data(), chunk.size());
start += chunk.size();
}
context.icc_data = move(icc_bytes);
return {};
}
static ErrorOr<void> read_colour_encoding(JPEGStream& stream, [[maybe_unused]] JPEGLoadingContext& context, int bytes_to_read)
{
// The App 14 segment is application specific in the first JPEG standard.
// However, the Adobe implementation is globally accepted and the value of the color transform
// was latter standardized as a JPEG-1 extension.
// For the structure of the App 14 segment, see:
// https://www.pdfa.org/norm-refs/5116.DCT_Filter.pdf
// 18 Adobe Application-Specific JPEG Marker
// For the value of color_transform, see:
// https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-T.872-201206-I!!PDF-E&type=items
// 6.5.3 - APP14 marker segment for colour encoding
if (bytes_to_read < 6)
return Error::from_string_literal("App14 segment too small");
[[maybe_unused]] auto const version = TRY(stream.read_u8());
[[maybe_unused]] u16 const flag0 = TRY(stream.read_u16());
[[maybe_unused]] u16 const flag1 = TRY(stream.read_u16());
auto const color_transform = TRY(stream.read_u8());
if (bytes_to_read > 6) {
dbgln_if(JPEG_DEBUG, "Unread bytes in App14 segment: {}", bytes_to_read - 6);
TRY(stream.discard(bytes_to_read - 6));
}
switch (color_transform) {
case 0:
context.color_transform = ColorTransform::CmykOrRgb;
break;
case 1:
context.color_transform = ColorTransform::YCbCr;
break;
case 2:
context.color_transform = ColorTransform::YCCK;
break;
default:
dbgln("0x{:x} is not a specified transform flag value, ignoring", color_transform);
}
return {};
}
static ErrorOr<void> read_app_marker(JPEGStream& stream, JPEGLoadingContext& context, int app_marker_number)
{
// B.2.4.6 - Application data syntax
u16 bytes_to_read = TRY(read_effective_chunk_size(stream));
StringBuilder builder;
for (;;) {
if (bytes_to_read == 0) {
dbgln_if(JPEG_DEBUG, "app marker {} does not start with zero-terminated string", app_marker_number);
return {};
}
auto c = TRY(stream.read_u8());
bytes_to_read--;
if (c == '\0')
break;
TRY(builder.try_append(c));
}
auto app_id = TRY(builder.to_string());
if (app_marker_number == 2 && app_id == "ICC_PROFILE"sv)
return read_icc_profile(stream, context, bytes_to_read);
if (app_marker_number == 14 && app_id == "Adobe"sv)
return read_colour_encoding(stream, context, bytes_to_read);
return stream.discard(bytes_to_read);
}
static inline bool validate_luma_and_modify_context(Component const& luma, JPEGLoadingContext& context)
{
if ((luma.hsample_factor == 1 || luma.hsample_factor == 2) && (luma.vsample_factor == 1 || luma.vsample_factor == 2)) {
context.mblock_meta.hpadded_count += luma.hsample_factor == 1 ? 0 : context.mblock_meta.hcount % 2;
context.mblock_meta.vpadded_count += luma.vsample_factor == 1 ? 0 : context.mblock_meta.vcount % 2;
context.mblock_meta.padded_total = context.mblock_meta.hpadded_count * context.mblock_meta.vpadded_count;
// For easy reference to relevant sample factors.
context.hsample_factor = luma.hsample_factor;
context.vsample_factor = luma.vsample_factor;
if constexpr (JPEG_DEBUG) {
dbgln("Horizontal Subsampling Factor: {}", luma.hsample_factor);
dbgln("Vertical Subsampling Factor: {}", luma.vsample_factor);
}
return true;
}
return false;
}
static inline void set_macroblock_metadata(JPEGLoadingContext& context)
{
context.mblock_meta.hcount = (context.frame.width + 7) / 8;
context.mblock_meta.vcount = (context.frame.height + 7) / 8;
context.mblock_meta.hpadded_count = context.mblock_meta.hcount;
context.mblock_meta.vpadded_count = context.mblock_meta.vcount;
context.mblock_meta.total = context.mblock_meta.hcount * context.mblock_meta.vcount;
}
static ErrorOr<void> ensure_standard_precision(StartOfFrame const& frame)
{
// B.2.2 - Frame header syntax
// Table B.2 - Frame header parameter sizes and values
if (frame.precision == 8)
return {};
if (frame.type == StartOfFrame::FrameType::Extended_Sequential_DCT && frame.precision == 12)
return {};
if (frame.type == StartOfFrame::FrameType::Progressive_DCT && frame.precision == 12)
return {};
dbgln_if(JPEG_DEBUG, "Unsupported precision: {}, for SOF type: {}!", frame.precision, static_cast<int>(frame.type));
return Error::from_string_literal("Unsupported SOF precision.");
}
static ErrorOr<void> read_start_of_frame(JPEGStream& stream, JPEGLoadingContext& context)
{
if (context.state == JPEGLoadingContext::FrameDecoded) {
dbgln_if(JPEG_DEBUG, "SOF repeated!");
return Error::from_string_literal("SOF repeated");
}
[[maybe_unused]] u16 const bytes_to_read = TRY(read_effective_chunk_size(stream));
context.frame.precision = TRY(stream.read_u8());
TRY(ensure_standard_precision(context.frame));
context.frame.height = TRY(stream.read_u16());
context.frame.width = TRY(stream.read_u16());
if (!context.frame.width || !context.frame.height) {
dbgln_if(JPEG_DEBUG, "ERROR! Image height: {}, Image width: {}!", context.frame.height, context.frame.width);
return Error::from_string_literal("Image frame height of width null");
}
if (context.frame.width > maximum_width_for_decoded_images || context.frame.height > maximum_height_for_decoded_images) {
dbgln("This JPEG is too large for comfort: {}x{}", context.frame.width, context.frame.height);
return Error::from_string_literal("JPEG too large for comfort");
}
set_macroblock_metadata(context);
auto component_count = TRY(stream.read_u8());
if (component_count != 1 && component_count != 3 && component_count != 4) {
dbgln_if(JPEG_DEBUG, "Unsupported number of components in SOF: {}!", component_count);
return Error::from_string_literal("Unsupported number of components in SOF");
}
for (u8 i = 0; i < component_count; i++) {
Component component;
component.id = TRY(stream.read_u8());
component.index = i;
u8 subsample_factors = TRY(stream.read_u8());
component.hsample_factor = subsample_factors >> 4;
component.vsample_factor = subsample_factors & 0x0F;
if (i == 0) {
// By convention, downsampling is applied only on chroma components. So we should
// hope to see the maximum sampling factor in the luma component.
if (!validate_luma_and_modify_context(component, context)) {
dbgln_if(JPEG_DEBUG, "Unsupported luma subsampling factors: horizontal: {}, vertical: {}",
component.hsample_factor,
component.vsample_factor);
return Error::from_string_literal("Unsupported luma subsampling factors");
}
} else {
if (component.hsample_factor != 1 || component.vsample_factor != 1) {
dbgln_if(JPEG_DEBUG, "Unsupported chroma subsampling factors: horizontal: {}, vertical: {}",
component.hsample_factor,
component.vsample_factor);
return Error::from_string_literal("Unsupported chroma subsampling factors");
}
}
component.quantization_table_id = TRY(stream.read_u8());
context.components.append(move(component));
}
return {};
}
static ErrorOr<void> read_quantization_table(JPEGStream& stream, JPEGLoadingContext& context)
{
// B.2.4.1 - Quantization table-specification syntax
u16 bytes_to_read = TRY(read_effective_chunk_size(stream));
while (bytes_to_read > 0) {
u8 const info_byte = TRY(stream.read_u8());
u8 const element_unit_hint = info_byte >> 4;
if (element_unit_hint > 1) {
dbgln_if(JPEG_DEBUG, "Unsupported unit hint in quantization table: {}!", element_unit_hint);
return Error::from_string_literal("Unsupported unit hint in quantization table");
}
u8 const table_id = info_byte & 0x0F;
if (table_id > 3) {
dbgln_if(JPEG_DEBUG, "Unsupported quantization table id: {}!", table_id);
return Error::from_string_literal("Unsupported quantization table id");
}
auto& maybe_table = context.quantization_tables[table_id];
if (!maybe_table.has_value())
maybe_table = Array<u16, 64> {};
auto& table = maybe_table.value();
for (int i = 0; i < 64; i++) {
if (element_unit_hint == 0)
table[zigzag_map[i]] = TRY(stream.read_u8());
else
table[zigzag_map[i]] = TRY(stream.read_u16());
}
bytes_to_read -= 1 + (element_unit_hint == 0 ? 64 : 128);
}
if (bytes_to_read != 0) {
dbgln_if(JPEG_DEBUG, "Invalid length for one or more quantization tables!");
return Error::from_string_literal("Invalid length for one or more quantization tables");
}
return {};
}
static ErrorOr<void> skip_segment(JPEGStream& stream)
{
u16 bytes_to_skip = TRY(stream.read_u16()) - 2;
2023-01-21 08:20:45 +00:00
TRY(stream.discard(bytes_to_skip));
return {};
}
static ErrorOr<void> dequantize(JPEGLoadingContext& context, Vector<Macroblock>& macroblocks)
{
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
for (u32 i = 0; i < context.components.size(); i++) {
auto const& component = context.components[i];
if (!context.quantization_tables[component.quantization_table_id].has_value()) {
dbgln_if(JPEG_DEBUG, "Unknown quantization table id: {}!", component.quantization_table_id);
return Error::from_string_literal("Unknown quantization table id");
}
auto const& table = context.quantization_tables[component.quantization_table_id].value();
for (u32 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
for (u32 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
u32 macroblock_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
Macroblock& block = macroblocks[macroblock_index];
auto* block_component = get_component(block, i);
for (u32 k = 0; k < 64; k++)
block_component[k] *= table[k];
}
}
}
}
}
return {};
}
static void inverse_dct(JPEGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
static float const m0 = 2.0f * AK::cos(1.0f / 16.0f * 2.0f * AK::Pi<float>);
static float const m1 = 2.0f * AK::cos(2.0f / 16.0f * 2.0f * AK::Pi<float>);
static float const m3 = 2.0f * AK::cos(2.0f / 16.0f * 2.0f * AK::Pi<float>);
static float const m5 = 2.0f * AK::cos(3.0f / 16.0f * 2.0f * AK::Pi<float>);
2022-04-01 17:58:27 +00:00
static float const m2 = m0 - m5;
static float const m4 = m0 + m5;
static float const s0 = AK::cos(0.0f / 16.0f * AK::Pi<float>) * AK::rsqrt(8.0f);
static float const s1 = AK::cos(1.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s2 = AK::cos(2.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s3 = AK::cos(3.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s4 = AK::cos(4.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s5 = AK::cos(5.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s6 = AK::cos(6.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s7 = AK::cos(7.0f / 16.0f * AK::Pi<float>) / 2.0f;
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
for (u32 component_i = 0; component_i < context.components.size(); component_i++) {
auto& component = context.components[component_i];
for (u8 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
for (u8 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
u32 macroblock_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
Macroblock& block = macroblocks[macroblock_index];
auto* block_component = get_component(block, component_i);
for (u32 k = 0; k < 8; ++k) {
2022-04-01 17:58:27 +00:00
float const g0 = block_component[0 * 8 + k] * s0;
float const g1 = block_component[4 * 8 + k] * s4;
float const g2 = block_component[2 * 8 + k] * s2;
float const g3 = block_component[6 * 8 + k] * s6;
float const g4 = block_component[5 * 8 + k] * s5;
float const g5 = block_component[1 * 8 + k] * s1;
float const g6 = block_component[7 * 8 + k] * s7;
float const g7 = block_component[3 * 8 + k] * s3;
float const f0 = g0;
float const f1 = g1;
float const f2 = g2;
float const f3 = g3;
float const f4 = g4 - g7;
float const f5 = g5 + g6;
float const f6 = g5 - g6;
float const f7 = g4 + g7;
float const e0 = f0;
float const e1 = f1;
float const e2 = f2 - f3;
float const e3 = f2 + f3;
float const e4 = f4;
float const e5 = f5 - f7;
float const e6 = f6;
float const e7 = f5 + f7;
float const e8 = f4 + f6;
float const d0 = e0;
float const d1 = e1;
float const d2 = e2 * m1;
float const d3 = e3;
float const d4 = e4 * m2;
float const d5 = e5 * m3;
float const d6 = e6 * m4;
float const d7 = e7;
float const d8 = e8 * m5;
float const c0 = d0 + d1;
float const c1 = d0 - d1;
float const c2 = d2 - d3;
float const c3 = d3;
float const c4 = d4 + d8;
float const c5 = d5 + d7;
float const c6 = d6 - d8;
float const c7 = d7;
float const c8 = c5 - c6;
float const b0 = c0 + c3;
float const b1 = c1 + c2;
float const b2 = c1 - c2;
float const b3 = c0 - c3;
float const b4 = c4 - c8;
float const b5 = c8;
float const b6 = c6 - c7;
float const b7 = c7;
block_component[0 * 8 + k] = b0 + b7;
block_component[1 * 8 + k] = b1 + b6;
block_component[2 * 8 + k] = b2 + b5;
block_component[3 * 8 + k] = b3 + b4;
block_component[4 * 8 + k] = b3 - b4;
block_component[5 * 8 + k] = b2 - b5;
block_component[6 * 8 + k] = b1 - b6;
block_component[7 * 8 + k] = b0 - b7;
}
for (u32 l = 0; l < 8; ++l) {
2022-04-01 17:58:27 +00:00
float const g0 = block_component[l * 8 + 0] * s0;
float const g1 = block_component[l * 8 + 4] * s4;
float const g2 = block_component[l * 8 + 2] * s2;
float const g3 = block_component[l * 8 + 6] * s6;
float const g4 = block_component[l * 8 + 5] * s5;
float const g5 = block_component[l * 8 + 1] * s1;
float const g6 = block_component[l * 8 + 7] * s7;
float const g7 = block_component[l * 8 + 3] * s3;
float const f0 = g0;
float const f1 = g1;
float const f2 = g2;
float const f3 = g3;
float const f4 = g4 - g7;
float const f5 = g5 + g6;
float const f6 = g5 - g6;
float const f7 = g4 + g7;
float const e0 = f0;
float const e1 = f1;
float const e2 = f2 - f3;
float const e3 = f2 + f3;
float const e4 = f4;
float const e5 = f5 - f7;
float const e6 = f6;
float const e7 = f5 + f7;
float const e8 = f4 + f6;
float const d0 = e0;
float const d1 = e1;
float const d2 = e2 * m1;
float const d3 = e3;
float const d4 = e4 * m2;
float const d5 = e5 * m3;
float const d6 = e6 * m4;
float const d7 = e7;
float const d8 = e8 * m5;
float const c0 = d0 + d1;
float const c1 = d0 - d1;
float const c2 = d2 - d3;
float const c3 = d3;
float const c4 = d4 + d8;
float const c5 = d5 + d7;
float const c6 = d6 - d8;
float const c7 = d7;
float const c8 = c5 - c6;
float const b0 = c0 + c3;
float const b1 = c1 + c2;
float const b2 = c1 - c2;
float const b3 = c0 - c3;
float const b4 = c4 - c8;
float const b5 = c8;
float const b6 = c6 - c7;
float const b7 = c7;
block_component[l * 8 + 0] = b0 + b7;
block_component[l * 8 + 1] = b1 + b6;
block_component[l * 8 + 2] = b2 + b5;
block_component[l * 8 + 3] = b3 + b4;
block_component[l * 8 + 4] = b3 - b4;
block_component[l * 8 + 5] = b2 - b5;
block_component[l * 8 + 6] = b1 - b6;
block_component[l * 8 + 7] = b0 - b7;
}
}
}
}
}
}
// F.2.1.5 - Inverse DCT (IDCT)
auto const level_shift = 1 << (context.frame.precision - 1);
auto const max_value = (1 << context.frame.precision) - 1;
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
for (u8 vfactor_i = 0; vfactor_i < context.vsample_factor; ++vfactor_i) {
for (u8 hfactor_i = 0; hfactor_i < context.hsample_factor; ++hfactor_i) {
u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i);
for (u8 i = 0; i < 8; ++i) {
for (u8 j = 0; j < 8; ++j) {
// FIXME: This just truncate all coefficients, it's an easy way to support (read hack)
// 12 bits JPEGs without rewriting all color transformations.
auto const clamp_to_8_bits = [&](u16 color) -> u8 {
if (context.frame.precision == 8)
return static_cast<u8>(color);
return static_cast<u8>(color >> 4);
};
macroblocks[mb_index].r[i * 8 + j] = clamp_to_8_bits(clamp(macroblocks[mb_index].r[i * 8 + j] + level_shift, 0, max_value));
macroblocks[mb_index].g[i * 8 + j] = clamp_to_8_bits(clamp(macroblocks[mb_index].g[i * 8 + j] + level_shift, 0, max_value));
macroblocks[mb_index].b[i * 8 + j] = clamp_to_8_bits(clamp(macroblocks[mb_index].b[i * 8 + j] + level_shift, 0, max_value));
macroblocks[mb_index].k[i * 8 + j] = clamp_to_8_bits(clamp(macroblocks[mb_index].k[i * 8 + j] + level_shift, 0, max_value));
}
}
}
}
}
}
}
static void ycbcr_to_rgb(JPEGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
// Conversion from YCbCr to RGB isn't specified in the first JPEG specification but in the JFIF extension:
// See: https://www.itu.int/rec/dologin_pub.asp?lang=f&id=T-REC-T.871-201105-I!!PDF-E&type=items
// 7 - Conversion to and from RGB
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
const u32 chroma_block_index = vcursor * context.mblock_meta.hpadded_count + hcursor;
2022-04-01 17:58:27 +00:00
Macroblock const& chroma = macroblocks[chroma_block_index];
// Overflows are intentional.
for (u8 vfactor_i = context.vsample_factor - 1; vfactor_i < context.vsample_factor; --vfactor_i) {
for (u8 hfactor_i = context.hsample_factor - 1; hfactor_i < context.hsample_factor; --hfactor_i) {
u32 macroblock_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i);
auto* y = macroblocks[macroblock_index].y;
auto* cb = macroblocks[macroblock_index].cb;
auto* cr = macroblocks[macroblock_index].cr;
for (u8 i = 7; i < 8; --i) {
for (u8 j = 7; j < 8; --j) {
const u8 pixel = i * 8 + j;
const u32 chroma_pxrow = (i / context.vsample_factor) + 4 * vfactor_i;
const u32 chroma_pxcol = (j / context.hsample_factor) + 4 * hfactor_i;
const u32 chroma_pixel = chroma_pxrow * 8 + chroma_pxcol;
int r = y[pixel] + 1.402f * (chroma.cr[chroma_pixel] - 128);
int g = y[pixel] - 0.3441f * (chroma.cb[chroma_pixel] - 128) - 0.7141f * (chroma.cr[chroma_pixel] - 128);
int b = y[pixel] + 1.772f * (chroma.cb[chroma_pixel] - 128);
y[pixel] = clamp(r, 0, 255);
cb[pixel] = clamp(g, 0, 255);
cr[pixel] = clamp(b, 0, 255);
}
}
}
}
}
}
}
static void invert_colors_for_adobe_images(JPEGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
if (!context.color_transform.has_value())
return;
// From libjpeg-turbo's libjpeg.txt:
// https://github.com/libjpeg-turbo/libjpeg-turbo/blob/main/libjpeg.txt
// CAUTION: it appears that Adobe Photoshop writes inverted data in CMYK JPEG
// files: 0 represents 100% ink coverage, rather than 0% ink as you'd expect.
// This is arguably a bug in Photoshop, but if you need to work with Photoshop
// CMYK files, you will have to deal with it in your application.
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
for (u8 vfactor_i = 0; vfactor_i < context.vsample_factor; ++vfactor_i) {
for (u8 hfactor_i = 0; hfactor_i < context.hsample_factor; ++hfactor_i) {
u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i);
for (u8 i = 0; i < 8; ++i) {
for (u8 j = 0; j < 8; ++j) {
macroblocks[mb_index].r[i * 8 + j] = NumericLimits<u8>::max() - macroblocks[mb_index].r[i * 8 + j];
macroblocks[mb_index].g[i * 8 + j] = NumericLimits<u8>::max() - macroblocks[mb_index].g[i * 8 + j];
macroblocks[mb_index].b[i * 8 + j] = NumericLimits<u8>::max() - macroblocks[mb_index].b[i * 8 + j];
macroblocks[mb_index].k[i * 8 + j] = NumericLimits<u8>::max() - macroblocks[mb_index].k[i * 8 + j];
}
}
}
}
}
}
}
static void cmyk_to_rgb(JPEGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
invert_colors_for_adobe_images(context, macroblocks);
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
for (u8 vfactor_i = context.vsample_factor - 1; vfactor_i < context.vsample_factor; --vfactor_i) {
for (u8 hfactor_i = context.hsample_factor - 1; hfactor_i < context.hsample_factor; --hfactor_i) {
u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i);
auto* c = macroblocks[mb_index].y;
auto* m = macroblocks[mb_index].cb;
auto* y = macroblocks[mb_index].cr;
auto* k = macroblocks[mb_index].k;
for (u8 i = 0; i < 8; ++i) {
for (u8 j = 0; j < 8; ++j) {
u8 const pixel = i * 8 + j;
static constexpr auto max_value = NumericLimits<u8>::max();
auto const black_component = max_value - k[pixel];
int const r = ((max_value - c[pixel]) * black_component) / max_value;
int const g = ((max_value - m[pixel]) * black_component) / max_value;
int const b = ((max_value - y[pixel]) * black_component) / max_value;
c[pixel] = clamp(r, 0, max_value);
m[pixel] = clamp(g, 0, max_value);
y[pixel] = clamp(b, 0, max_value);
}
}
}
}
}
}
}
static void ycck_to_rgb(JPEGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
// 7 - Conversions between colour encodings
// YCCK is obtained from CMYK by converting the CMY channels to YCC channel.
// To convert back into RGB, we only need the 3 first components, which are baseline YCbCr
ycbcr_to_rgb(context, macroblocks);
// RGB to CMYK, as mentioned in https://www.smcm.iqfr.csic.es/docs/intel/ipp/ipp_manual/IPPI/ippi_ch15/functn_YCCKToCMYK_JPEG.htm#functn_YCCKToCMYK_JPEG
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
for (u8 vfactor_i = 0; vfactor_i < context.vsample_factor; ++vfactor_i) {
for (u8 hfactor_i = 0; hfactor_i < context.hsample_factor; ++hfactor_i) {
u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i);
for (u8 i = 0; i < 8; ++i) {
for (u8 j = 0; j < 8; ++j) {
macroblocks[mb_index].r[i * 8 + j] = NumericLimits<u8>::max() - macroblocks[mb_index].r[i * 8 + j];
macroblocks[mb_index].g[i * 8 + j] = NumericLimits<u8>::max() - macroblocks[mb_index].g[i * 8 + j];
macroblocks[mb_index].b[i * 8 + j] = NumericLimits<u8>::max() - macroblocks[mb_index].b[i * 8 + j];
}
}
}
}
}
}
cmyk_to_rgb(context, macroblocks);
}
static ErrorOr<void> handle_color_transform(JPEGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
if (context.color_transform.has_value()) {
// https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-T.872-201206-I!!PDF-E&type=items
// 6.5.3 - APP14 marker segment for colour encoding
switch (*context.color_transform) {
case ColorTransform::CmykOrRgb:
if (context.components.size() == 4) {
cmyk_to_rgb(context, macroblocks);
} else if (context.components.size() == 3) {
// Note: components.size() == 3 means that we have an RGB image, so no color transformation is needed.
} else {
return Error::from_string_literal("Wrong number of components for CMYK or RGB, aborting.");
}
break;
case ColorTransform::YCbCr:
ycbcr_to_rgb(context, macroblocks);
break;
case ColorTransform::YCCK:
ycck_to_rgb(context, macroblocks);
break;
}
return {};
}
// No App14 segment is present, assuming :
// - 1 components means grayscale
// - 3 components means YCbCr
// - 4 components means CMYK
if (context.components.size() == 4)
cmyk_to_rgb(context, macroblocks);
if (context.components.size() == 3)
ycbcr_to_rgb(context, macroblocks);
if (context.components.size() == 1) {
// With Cb and Cr being equal to zero, this function assign the Y
// value (luminosity) to R, G and B. Providing a proper conversion
// from grayscale to RGB.
ycbcr_to_rgb(context, macroblocks);
}
return {};
}
static ErrorOr<void> compose_bitmap(JPEGLoadingContext& context, Vector<Macroblock> const& macroblocks)
{
context.bitmap = TRY(Bitmap::create(BitmapFormat::BGRx8888, { context.frame.width, context.frame.height }));
for (u32 y = context.frame.height - 1; y < context.frame.height; y--) {
const u32 block_row = y / 8;
const u32 pixel_row = y % 8;
for (u32 x = 0; x < context.frame.width; x++) {
const u32 block_column = x / 8;
auto& block = macroblocks[block_row * context.mblock_meta.hpadded_count + block_column];
const u32 pixel_column = x % 8;
const u32 pixel_index = pixel_row * 8 + pixel_column;
const Color color { (u8)block.y[pixel_index], (u8)block.cb[pixel_index], (u8)block.cr[pixel_index] };
context.bitmap->set_pixel(x, y, color);
}
}
return {};
}
static bool is_app_marker(Marker const marker)
{
return marker >= JPEG_APPN0 && marker <= JPEG_APPN15;
}
static bool is_miscellaneous_or_table_marker(Marker const marker)
{
// B.2.4 - Table-specification and miscellaneous marker segment syntax
// See also B.6 - Summary: Figure B.17 Flow of marker segment
bool const is_misc = marker == JPEG_COM || marker == JPEG_DRI || is_app_marker(marker);
bool const is_table = marker == JPEG_DQT || marker == JPEG_DAC || marker == JPEG_DHT;
return is_misc || is_table;
}
static ErrorOr<void> handle_miscellaneous_or_table(JPEGStream& stream, JPEGLoadingContext& context, Marker const marker)
{
if (is_app_marker(marker)) {
TRY(read_app_marker(stream, context, marker - JPEG_APPN0));
return {};
}
switch (marker) {
case JPEG_COM:
case JPEG_DAC:
dbgln_if(JPEG_DEBUG, "TODO: implement marker \"{:x}\"", marker);
if (auto result = skip_segment(stream); result.is_error()) {
dbgln_if(JPEG_DEBUG, "Error skipping marker: {:x}!", marker);
return result.release_error();
}
break;
case JPEG_DHT:
TRY(read_huffman_table(stream, context));
break;
case JPEG_DQT:
TRY(read_quantization_table(stream, context));
break;
case JPEG_DRI:
TRY(read_restart_interval(stream, context));
break;
default:
dbgln("Unexpected marker: {:x}", marker);
VERIFY_NOT_REACHED();
}
return {};
}
static ErrorOr<void> parse_header(JPEGStream& stream, JPEGLoadingContext& context)
{
auto marker = TRY(read_marker_at_cursor(stream));
if (marker != JPEG_SOI) {
dbgln_if(JPEG_DEBUG, "SOI not found: {:x}!", marker);
return Error::from_string_literal("SOI not found");
}
for (;;) {
marker = TRY(read_marker_at_cursor(stream));
if (is_miscellaneous_or_table_marker(marker)) {
TRY(handle_miscellaneous_or_table(stream, context, marker));
continue;
}
// Set frame type if the marker marks a new frame.
if (is_frame_marker(marker))
context.frame.type = static_cast<StartOfFrame::FrameType>(marker & 0xF);
switch (marker) {
case JPEG_RST0:
case JPEG_RST1:
case JPEG_RST2:
case JPEG_RST3:
case JPEG_RST4:
case JPEG_RST5:
case JPEG_RST6:
case JPEG_RST7:
case JPEG_SOI:
case JPEG_EOI:
dbgln_if(JPEG_DEBUG, "Unexpected marker {:x}!", marker);
return Error::from_string_literal("Unexpected marker");
case JPEG_SOF0:
case JPEG_SOF1:
case JPEG_SOF2:
TRY(read_start_of_frame(stream, context));
context.state = JPEGLoadingContext::FrameDecoded;
return {};
default:
if (auto result = skip_segment(stream); result.is_error()) {
dbgln_if(JPEG_DEBUG, "Error skipping marker: {:x}!", marker);
return result.release_error();
}
break;
}
}
VERIFY_NOT_REACHED();
}
static ErrorOr<void> decode_header(JPEGLoadingContext& context)
{
if (context.state < JPEGLoadingContext::State::HeaderDecoded) {
if (auto result = parse_header(context.stream, context); result.is_error()) {
context.state = JPEGLoadingContext::State::Error;
return result.release_error();
}
2023-02-23 04:54:30 +00:00
if constexpr (JPEG_DEBUG) {
dbgln("Image width: {}", context.frame.width);
dbgln("Image height: {}", context.frame.height);
dbgln("Macroblocks in a row: {}", context.mblock_meta.hpadded_count);
dbgln("Macroblocks in a column: {}", context.mblock_meta.vpadded_count);
dbgln("Macroblock meta padded total: {}", context.mblock_meta.padded_total);
}
context.state = JPEGLoadingContext::State::HeaderDecoded;
}
return {};
}
static ErrorOr<Vector<Macroblock>> construct_macroblocks(JPEGLoadingContext& context)
{
// B.6 - Summary
// See: Figure B.16 Flow of compressed data syntax
// This function handles the "Multi-scan" loop.
Vector<Macroblock> macroblocks;
TRY(macroblocks.try_resize(context.mblock_meta.padded_total));
Marker marker = TRY(read_marker_at_cursor(context.stream));
while (true) {
if (is_miscellaneous_or_table_marker(marker)) {
TRY(handle_miscellaneous_or_table(context.stream, context, marker));
} else if (marker == JPEG_SOS) {
TRY(read_start_of_scan(context.stream, context));
TRY(decode_huffman_stream(context, macroblocks));
} else if (marker == JPEG_EOI) {
return macroblocks;
} else {
dbgln_if(JPEG_DEBUG, "Unexpected marker {:x}!", marker);
return Error::from_string_literal("Unexpected marker");
}
marker = TRY(read_marker_at_cursor(context.stream));
}
}
static ErrorOr<void> decode_jpeg(JPEGLoadingContext& context)
{
TRY(decode_header(context));
auto macroblocks = TRY(construct_macroblocks(context));
TRY(dequantize(context, macroblocks));
inverse_dct(context, macroblocks);
TRY(handle_color_transform(context, macroblocks));
TRY(compose_bitmap(context, macroblocks));
return {};
}
JPEGImageDecoderPlugin::JPEGImageDecoderPlugin(NonnullOwnPtr<FixedMemoryStream> stream)
{
m_context = JPEGLoadingContext::create(move(stream)).release_value_but_fixme_should_propagate_errors();
}
JPEGImageDecoderPlugin::~JPEGImageDecoderPlugin() = default;
IntSize JPEGImageDecoderPlugin::size()
{
if (m_context->state == JPEGLoadingContext::State::Error)
return {};
if (m_context->state >= JPEGLoadingContext::State::FrameDecoded)
return { m_context->frame.width, m_context->frame.height };
return {};
}
void JPEGImageDecoderPlugin::set_volatile()
{
if (m_context->bitmap)
m_context->bitmap->set_volatile();
}
bool JPEGImageDecoderPlugin::set_nonvolatile(bool& was_purged)
{
if (!m_context->bitmap)
return false;
return m_context->bitmap->set_nonvolatile(was_purged);
}
ErrorOr<void> JPEGImageDecoderPlugin::initialize()
{
return {};
}
bool JPEGImageDecoderPlugin::sniff(ReadonlyBytes data)
{
return data.size() > 3
&& data.data()[0] == 0xFF
&& data.data()[1] == 0xD8
&& data.data()[2] == 0xFF;
}
ErrorOr<NonnullOwnPtr<ImageDecoderPlugin>> JPEGImageDecoderPlugin::create(ReadonlyBytes data)
{
auto stream = TRY(try_make<FixedMemoryStream>(data));
return adopt_nonnull_own_or_enomem(new (nothrow) JPEGImageDecoderPlugin(move(stream)));
}
bool JPEGImageDecoderPlugin::is_animated()
{
return false;
}
size_t JPEGImageDecoderPlugin::loop_count()
{
return 0;
}
size_t JPEGImageDecoderPlugin::frame_count()
{
return 1;
}
size_t JPEGImageDecoderPlugin::first_animated_frame_index()
{
return 0;
}
ErrorOr<ImageFrameDescriptor> JPEGImageDecoderPlugin::frame(size_t index)
{
if (index > 0)
return Error::from_string_literal("JPEGImageDecoderPlugin: Invalid frame index");
if (m_context->state == JPEGLoadingContext::State::Error)
return Error::from_string_literal("JPEGImageDecoderPlugin: Decoding failed");
if (m_context->state < JPEGLoadingContext::State::BitmapDecoded) {
if (auto result = decode_jpeg(*m_context); result.is_error()) {
m_context->state = JPEGLoadingContext::State::Error;
return result.release_error();
}
m_context->state = JPEGLoadingContext::State::BitmapDecoded;
}
return ImageFrameDescriptor { m_context->bitmap, 0 };
}
ErrorOr<Optional<ReadonlyBytes>> JPEGImageDecoderPlugin::icc_data()
{
TRY(decode_header(*m_context));
if (m_context->icc_data.has_value())
return *m_context->icc_data;
return OptionalNone {};
}
}