ladybird/Userland/Libraries/LibRegex/RegexMatch.h

474 lines
15 KiB
C
Raw Normal View History

LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
/*
* Copyright (c) 2020, Emanuel Sprung <emanuel.sprung@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
*/
#pragma once
#include "RegexOptions.h"
#include <AK/FlyString.h>
#include <AK/HashMap.h>
#include <AK/MemMem.h>
#include <AK/String.h>
#include <AK/StringBuilder.h>
#include <AK/StringView.h>
#include <AK/Utf16View.h>
#include <AK/Utf32View.h>
#include <AK/Utf8View.h>
#include <AK/Variant.h>
#include <AK/Vector.h>
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
namespace regex {
class RegexStringView {
public:
2021-07-23 15:55:14 +00:00
RegexStringView(char const* chars)
: m_view(StringView { chars })
{
}
2021-07-23 15:55:14 +00:00
RegexStringView(String const& string)
: m_view(string.view())
{
}
2021-07-23 15:55:14 +00:00
RegexStringView(StringView const view)
: m_view(view)
{
}
RegexStringView(Utf32View view)
: m_view(view)
{
}
RegexStringView(Utf16View view)
: m_view(view)
{
}
RegexStringView(Utf8View view)
: m_view(view)
{
}
2021-07-23 15:55:14 +00:00
StringView const& string_view() const
{
return m_view.get<StringView>();
}
2021-07-23 15:55:14 +00:00
Utf32View const& u32_view() const
{
return m_view.get<Utf32View>();
}
Utf16View const& u16_view() const
{
return m_view.get<Utf16View>();
}
2021-07-23 15:55:14 +00:00
Utf8View const& u8_view() const
{
return m_view.get<Utf8View>();
}
bool unicode() const { return m_unicode; }
void set_unicode(bool unicode) { m_unicode = unicode; }
bool is_empty() const
{
return m_view.visit([](auto& view) { return view.is_empty(); });
}
bool is_null() const
{
return m_view.visit([](auto& view) { return view.is_null(); });
}
size_t length() const
{
if (unicode()) {
return m_view.visit(
[](Utf16View const& view) { return view.length_in_code_points(); },
[](auto const& view) { return view.length(); });
}
return m_view.visit(
[](Utf16View const& view) { return view.length_in_code_units(); },
[](Utf8View const& view) { return view.byte_length(); },
[](auto const& view) { return view.length(); });
}
RegexStringView construct_as_same(Span<u32> data, Optional<String>& optional_string_storage, Vector<u16>& optional_utf16_storage) const
{
auto view = m_view.visit(
[&]<typename T>(T const&) {
StringBuilder builder;
for (auto ch : data)
builder.append(ch); // Note: The type conversion is intentional.
optional_string_storage = builder.build();
return RegexStringView { T { *optional_string_storage } };
},
[&](Utf32View) {
return RegexStringView { Utf32View { data.data(), data.size() } };
},
[&](Utf16View) {
optional_utf16_storage = AK::utf32_to_utf16(Utf32View { data.data(), data.size() });
return RegexStringView { Utf16View { optional_utf16_storage } };
});
view.set_unicode(unicode());
return view;
}
Vector<RegexStringView> lines() const
{
return m_view.visit(
[](StringView view) {
auto views = view.lines(false);
Vector<RegexStringView> new_views;
for (auto& view : views)
new_views.empend(view);
return new_views;
},
[](Utf32View view) {
Vector<RegexStringView> views;
u32 newline = '\n';
while (!view.is_empty()) {
auto position = AK::memmem_optional(view.code_points(), view.length() * sizeof(u32), &newline, sizeof(u32));
if (!position.has_value())
break;
auto offset = position.value() / sizeof(u32);
views.empend(view.substring_view(0, offset));
view = view.substring_view(offset + 1, view.length() - offset - 1);
}
if (!view.is_empty())
views.empend(view);
return views;
},
[](Utf16View view) {
Vector<RegexStringView> views;
u16 newline = '\n';
while (!view.is_empty()) {
auto position = AK::memmem_optional(view.data(), view.length_in_code_units() * sizeof(u16), &newline, sizeof(u16));
if (!position.has_value())
break;
auto offset = position.value() / sizeof(u16);
views.empend(view.substring_view(0, offset));
view = view.substring_view(offset + 1, view.length_in_code_units() - offset - 1);
}
if (!view.is_empty())
views.empend(view);
return views;
},
[](Utf8View& view) {
Vector<RegexStringView> views;
auto it = view.begin();
auto previous_newline_position_it = it;
for (;;) {
if (*it == '\n') {
auto previous_offset = view.byte_offset_of(previous_newline_position_it);
auto new_offset = view.byte_offset_of(it);
auto slice = view.substring_view(previous_offset, new_offset - previous_offset);
views.empend(slice);
++it;
previous_newline_position_it = it;
}
if (it.done())
break;
++it;
}
if (it != previous_newline_position_it) {
auto previous_offset = view.byte_offset_of(previous_newline_position_it);
auto new_offset = view.byte_offset_of(it);
auto slice = view.substring_view(previous_offset, new_offset - previous_offset);
views.empend(slice);
}
return views;
});
}
RegexStringView substring_view(size_t offset, size_t length) const
{
if (unicode()) {
auto view = m_view.visit(
[&](auto view) { return RegexStringView { view.substring_view(offset, length) }; },
[&](Utf16View const& view) { return RegexStringView { view.unicode_substring_view(offset, length) }; },
[&](Utf8View const& view) { return RegexStringView { view.unicode_substring_view(offset, length) }; });
view.set_unicode(unicode());
return view;
}
auto view = m_view.visit([&](auto view) { return RegexStringView { view.substring_view(offset, length) }; });
view.set_unicode(unicode());
return view;
}
String to_string() const
{
return m_view.visit(
[](StringView view) { return view.to_string(); },
[](Utf16View view) { return view.to_utf8(Utf16View::AllowInvalidCodeUnits::Yes); },
[](auto& view) {
StringBuilder builder;
for (auto it = view.begin(); it != view.end(); ++it)
builder.append_code_point(*it);
return builder.to_string();
});
}
u32 operator[](size_t index) const
{
return m_view.visit(
[&](StringView view) -> u32 {
auto ch = view[index];
if (ch < 0)
return 256u + ch;
return ch;
},
[&](Utf32View& view) -> u32 { return view[index]; },
[&](auto& view) -> u32 {
size_t i = index;
for (auto it = view.begin(); it != view.end(); ++it, --i) {
if (i == 0)
return *it;
}
VERIFY_NOT_REACHED();
});
}
2021-07-23 15:55:14 +00:00
bool operator==(char const* cstring) const
{
return m_view.visit(
[&](Utf32View) { return to_string() == cstring; },
[&](Utf16View) { return to_string() == cstring; },
[&](Utf8View const& view) { return view.as_string() == cstring; },
[&](StringView view) { return view == cstring; });
}
2021-07-23 15:55:14 +00:00
bool operator!=(char const* cstring) const
{
return !(*this == cstring);
}
2021-07-23 15:55:14 +00:00
bool operator==(String const& string) const
{
return m_view.visit(
[&](Utf32View) { return to_string() == string; },
[&](Utf16View) { return to_string() == string; },
[&](Utf8View const& view) { return view.as_string() == string; },
[&](StringView view) { return view == string; });
}
2021-07-23 15:55:14 +00:00
bool operator==(StringView const& string) const
{
return m_view.visit(
[&](Utf32View) { return to_string() == string; },
[&](Utf16View) { return to_string() == string; },
[&](Utf8View const& view) { return view.as_string() == string; },
[&](StringView view) { return view == string; });
}
2021-07-23 15:55:14 +00:00
bool operator!=(StringView const& other) const
{
return !(*this == other);
}
2021-07-23 15:55:14 +00:00
bool operator==(Utf32View const& other) const
{
return m_view.visit(
[&](Utf32View view) {
return view.length() == other.length() && __builtin_memcmp(view.code_points(), other.code_points(), view.length() * sizeof(u32)) == 0;
},
[&](Utf16View) { return to_string() == RegexStringView { other }.to_string(); },
[&](Utf8View const& view) { return view.as_string() == RegexStringView { other }.to_string(); },
[&](StringView view) { return view == RegexStringView { other }.to_string(); });
}
2021-07-23 15:55:14 +00:00
bool operator!=(Utf32View const& other) const
{
return !(*this == other);
}
bool operator==(Utf16View const& other) const
{
return m_view.visit(
[&](Utf32View) { return to_string() == RegexStringView { other }.to_string(); },
[&](Utf16View const& view) { return view == other; },
[&](Utf8View const& view) { return view.as_string() == RegexStringView { other }.to_string(); },
[&](StringView view) { return view == RegexStringView { other }.to_string(); });
}
bool operator!=(Utf16View const& other) const
{
return !(*this == other);
}
2021-07-23 15:55:14 +00:00
bool operator==(Utf8View const& other) const
{
return m_view.visit(
[&](Utf32View) { return to_string() == other.as_string(); },
[&](Utf16View) { return to_string() == other.as_string(); },
[&](Utf8View const& view) { return view.as_string() == other.as_string(); },
[&](StringView view) { return other.as_string() == view; });
}
2021-07-23 15:55:14 +00:00
bool operator!=(Utf8View const& other) const
{
return !(*this == other);
}
2021-07-23 15:55:14 +00:00
bool equals(RegexStringView const& other) const
{
return other.m_view.visit([&](auto const& view) { return operator==(view); });
}
2021-07-23 15:55:14 +00:00
bool equals_ignoring_case(RegexStringView const& other) const
{
// FIXME: Implement equals_ignoring_case() for unicode.
return m_view.visit(
[&](StringView view) {
return other.m_view.visit(
[&](StringView other_view) { return view.equals_ignoring_case(other_view); },
[](auto&) -> bool { TODO(); });
},
[&](Utf16View view) {
return other.m_view.visit(
[&](Utf16View other_view) { return view.equals_ignoring_case(other_view); },
[](auto&) -> bool { TODO(); });
},
[](auto&) -> bool { TODO(); });
}
2021-07-23 15:55:14 +00:00
bool starts_with(StringView const& str) const
{
return m_view.visit(
[&](Utf32View) -> bool {
TODO();
},
[&](Utf16View) -> bool {
TODO();
},
[&](Utf8View const& view) { return view.as_string().starts_with(str); },
[&](StringView view) { return view.starts_with(str); });
}
2021-07-23 15:55:14 +00:00
bool starts_with(Utf32View const& str) const
{
return m_view.visit(
[&](Utf32View view) -> bool {
if (str.length() > view.length())
return false;
if (str.length() == view.length())
return operator==(str);
for (size_t i = 0; i < str.length(); ++i) {
if (str.at(i) != view.at(i))
return false;
}
return true;
},
[&](Utf16View) -> bool { TODO(); },
[&](Utf8View const& view) {
auto it = view.begin();
for (auto code_point : str) {
if (it.done())
return false;
if (code_point != *it)
return false;
++it;
}
return true;
},
[&](StringView) -> bool { TODO(); });
}
private:
Variant<StringView, Utf8View, Utf16View, Utf32View> m_view;
bool m_unicode { false };
};
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
class Match final {
private:
Optional<FlyString> string;
public:
Match() = default;
~Match() = default;
2021-07-23 15:55:14 +00:00
Match(RegexStringView const view_, size_t const line_, size_t const column_, size_t const global_offset_)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
: view(view_)
, line(line_)
, column(column_)
, global_offset(global_offset_)
, left_column(column_)
{
}
2021-07-23 15:55:14 +00:00
Match(String const string_, size_t const line_, size_t const column_, size_t const global_offset_)
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
: string(string_)
, view(string.value().view())
, line(line_)
, column(column_)
, global_offset(global_offset_)
, left_column(column_)
{
}
RegexStringView view { nullptr };
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
size_t line { 0 };
size_t column { 0 };
size_t global_offset { 0 };
// ugly, as not usable by user, but needed to prevent to create extra vectors that are
// able to store the column when the left paren has been found
size_t left_column { 0 };
};
struct MatchInput {
RegexStringView view { nullptr };
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
AllOptions regex_options {};
size_t start_offset { 0 }; // For Stateful matches, saved and restored from Regex::start_offset.
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
size_t match_index { 0 };
size_t line { 0 };
size_t column { 0 };
size_t global_offset { 0 }; // For multiline matching, knowing the offset from start could be important
mutable size_t fail_counter { 0 };
mutable Vector<size_t> saved_positions;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
};
struct MatchState {
size_t string_position_before_match { 0 };
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
size_t string_position { 0 };
size_t instruction_position { 0 };
size_t fork_at_position { 0 };
Vector<Match> matches;
Vector<Vector<Match>> capture_group_matches;
Vector<HashMap<String, Match>> named_capture_group_matches;
LibRegex: Add a regular expression library This commit is a mix of several commits, squashed into one because the commits before 'Move regex to own Library and fix all the broken stuff' were not fixable in any elegant way. The commits are listed below for "historical" purposes: - AK: Add options/flags and Errors for regular expressions Flags can be provided for any possible flavour by adding a new scoped enum. Handling of flags is done by templated Options class and the overloaded '|' and '&' operators. - AK: Add Lexer for regular expressions The lexer parses the input and extracts tokens needed to parse a regular expression. - AK: Add regex Parser and PosixExtendedParser This patchset adds a abstract parser class that can be derived to implement different parsers. A parser produces bytecode to be executed within the regex matcher. - AK: Add regex matcher This patchset adds an regex matcher based on the principles of the T-REX VM. The bytecode pruduced by the respective Parser is put into the matcher and the VM will recursively execute the bytecode according to the available OpCodes. Possible improvement: the recursion could be replaced by multi threading capabilities. To match a Regular expression, e.g. for the Posix standard regular expression matcher use the following API: ``` Pattern<PosixExtendedParser> pattern("^.*$"); auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle EXPECT(result.count == 1); EXPECT(result.matches.at(0).view.starts_with("Well")); EXPECT(result.matches.at(0).view.end() == "!"); result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line EXPECT(result.count == 2); EXPECT(result.matches.at(0).view == "Well, hello friends!"); EXPECT(result.matches.at(1).view == "Hello World!"); EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources. ``` - AK: Rework regex to work with opcodes objects This patchsets reworks the matcher to work on a more structured base. For that an abstract OpCode class and derived classes for the specific OpCodes have been added. The respective opcode logic is contained in each respective execute() method. - AK: Add benchmark for regex - AK: Some optimization in regex for runtime and memory - LibRegex: Move regex to own Library and fix all the broken stuff Now regex works again and grep utility is also in place for testing. This commit also fixes the use of regex.h in C by making `regex_t` an opaque (-ish) type, which makes its behaviour consistent between C and C++ compilers. Previously, <regex.h> would've blown C compilers up, and even if it didn't, would've caused a leak in C code, and not in C++ code (due to the existence of `OwnPtr` inside the struct). To make this whole ordeal easier to deal with (for now), this pulls the definitions of `reg*()` into LibRegex. pros: - The circular dependency between LibC and LibRegex is broken - Eaiser to test (without accidentally pulling in the host's libc!) cons: - Using any of the regex.h functions will require the user to link -lregex - The symbols will be missing from libc, which will be a big surprise down the line (especially with shared libs). Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-04-26 12:45:10 +00:00
};
struct MatchOutput {
size_t operations;
Vector<Match> matches;
Vector<Vector<Match>> capture_group_matches;
Vector<HashMap<String, Match>> named_capture_group_matches;
};
}
using regex::RegexStringView;
template<>
struct AK::Formatter<regex::RegexStringView> : Formatter<StringView> {
2021-07-23 15:55:14 +00:00
void format(FormatBuilder& builder, regex::RegexStringView const& value)
{
auto string = value.to_string();
return Formatter<StringView>::format(builder, string);
}
};