ladybird/Kernel/VM/RangeAllocator.cpp

234 lines
7.6 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/BinarySearch.h>
#include <AK/Checked.h>
#include <AK/QuickSort.h>
#include <Kernel/Random.h>
#include <Kernel/Thread.h>
#include <Kernel/VM/RangeAllocator.h>
#define VM_GUARD_PAGES
namespace Kernel {
RangeAllocator::RangeAllocator()
: m_total_range({}, 0)
{
}
void RangeAllocator::initialize_with_range(VirtualAddress base, size_t size)
{
m_total_range = { base, size };
m_available_ranges.append({ base, size });
}
void RangeAllocator::initialize_from_parent(const RangeAllocator& parent_allocator)
{
ScopedSpinLock lock(parent_allocator.m_lock);
m_total_range = parent_allocator.m_total_range;
m_available_ranges = parent_allocator.m_available_ranges;
}
RangeAllocator::~RangeAllocator()
{
}
void RangeAllocator::dump() const
{
ASSERT(m_lock.is_locked());
dbgln("RangeAllocator({})", this);
for (auto& range : m_available_ranges) {
dbgln(" {:x} -> {:x}", range.base().get(), range.end().get() - 1);
}
}
Vector<Range, 2> Range::carve(const Range& taken)
{
ASSERT((taken.size() % PAGE_SIZE) == 0);
Vector<Range, 2> parts;
if (taken == *this)
return {};
if (taken.base() > base())
parts.append({ base(), taken.base().get() - base().get() });
if (taken.end() < end())
parts.append({ taken.end(), end().get() - taken.end().get() });
return parts;
}
void RangeAllocator::carve_at_index(int index, const Range& range)
{
ASSERT(m_lock.is_locked());
auto remaining_parts = m_available_ranges[index].carve(range);
ASSERT(remaining_parts.size() >= 1);
ASSERT(m_total_range.contains(remaining_parts[0]));
m_available_ranges[index] = remaining_parts[0];
if (remaining_parts.size() == 2) {
ASSERT(m_total_range.contains(remaining_parts[1]));
m_available_ranges.insert(index + 1, move(remaining_parts[1]));
}
}
Optional<Range> RangeAllocator::allocate_randomized(size_t size, size_t alignment)
{
if (!size)
return {};
ASSERT((size % PAGE_SIZE) == 0);
ASSERT((alignment % PAGE_SIZE) == 0);
// FIXME: I'm sure there's a smarter way to do this.
static constexpr size_t maximum_randomization_attempts = 1000;
for (size_t i = 0; i < maximum_randomization_attempts; ++i) {
VirtualAddress random_address { get_good_random<FlatPtr>() };
random_address.mask(PAGE_MASK);
if (!m_total_range.contains(random_address, size))
continue;
auto range = allocate_specific(random_address, size);
if (range.has_value())
return range;
}
return allocate_anywhere(size, alignment);
}
Optional<Range> RangeAllocator::allocate_anywhere(size_t size, size_t alignment)
{
if (!size)
return {};
ASSERT((size % PAGE_SIZE) == 0);
ASSERT((alignment % PAGE_SIZE) == 0);
#ifdef VM_GUARD_PAGES
// NOTE: We pad VM allocations with a guard page on each side.
if (Checked<size_t>::addition_would_overflow(size, PAGE_SIZE * 2))
return {};
size_t effective_size = size + PAGE_SIZE * 2;
size_t offset_from_effective_base = PAGE_SIZE;
#else
size_t effective_size = size;
size_t offset_from_effective_base = 0;
#endif
if (Checked<size_t>::addition_would_overflow(effective_size, alignment))
return {};
ScopedSpinLock lock(m_lock);
for (size_t i = 0; i < m_available_ranges.size(); ++i) {
auto& available_range = m_available_ranges[i];
// FIXME: This check is probably excluding some valid candidates when using a large alignment.
if (available_range.size() < (effective_size + alignment))
continue;
FlatPtr initial_base = available_range.base().offset(offset_from_effective_base).get();
FlatPtr aligned_base = round_up_to_power_of_two(initial_base, alignment);
Range allocated_range(VirtualAddress(aligned_base), size);
ASSERT(m_total_range.contains(allocated_range));
if (available_range == allocated_range) {
m_available_ranges.remove(i);
return allocated_range;
}
carve_at_index(i, allocated_range);
return allocated_range;
}
klog() << "RangeAllocator: Failed to allocate anywhere: " << size << ", " << alignment;
return {};
}
Optional<Range> RangeAllocator::allocate_specific(VirtualAddress base, size_t size)
{
if (!size)
return {};
ASSERT(base.is_page_aligned());
ASSERT((size % PAGE_SIZE) == 0);
Range allocated_range(base, size);
ScopedSpinLock lock(m_lock);
for (size_t i = 0; i < m_available_ranges.size(); ++i) {
auto& available_range = m_available_ranges[i];
ASSERT(m_total_range.contains(allocated_range));
if (!available_range.contains(base, size))
continue;
if (available_range == allocated_range) {
m_available_ranges.remove(i);
return allocated_range;
}
carve_at_index(i, allocated_range);
return allocated_range;
}
return {};
}
void RangeAllocator::deallocate(const Range& range)
{
ScopedSpinLock lock(m_lock);
ASSERT(m_total_range.contains(range));
ASSERT(range.size());
ASSERT((range.size() % PAGE_SIZE) == 0);
ASSERT(range.base() < range.end());
ASSERT(!m_available_ranges.is_empty());
size_t nearby_index = 0;
auto* existing_range = binary_search(
m_available_ranges.span(),
range,
&nearby_index,
[](auto& a, auto& b) { return a.base().get() - b.end().get(); });
size_t inserted_index = 0;
if (existing_range) {
existing_range->m_size += range.size();
inserted_index = nearby_index;
} else {
m_available_ranges.insert_before_matching(
Range(range), [&](auto& entry) {
return entry.base() >= range.end();
},
nearby_index, &inserted_index);
}
if (inserted_index < (m_available_ranges.size() - 1)) {
// We already merged with previous. Try to merge with next.
auto& inserted_range = m_available_ranges[inserted_index];
auto& next_range = m_available_ranges[inserted_index + 1];
if (inserted_range.end() == next_range.base()) {
inserted_range.m_size += next_range.size();
m_available_ranges.remove(inserted_index + 1);
return;
}
}
}
}