ladybird/Kernel/Scheduler.cpp

561 lines
20 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/BuiltinWrappers.h>
#include <AK/ScopeGuard.h>
#include <AK/Singleton.h>
#include <AK/Time.h>
#include <Kernel/Arch/TrapFrame.h>
Meta: Split debug defines into multiple headers. The following script was used to make these changes: #!/bin/bash set -e tmp=$(mktemp -d) echo "tmp=$tmp" find Kernel \( -name '*.cpp' -o -name '*.h' \) | sort > $tmp/Kernel.files find . \( -path ./Toolchain -prune -o -path ./Build -prune -o -path ./Kernel -prune \) -o \( -name '*.cpp' -o -name '*.h' \) -print | sort > $tmp/EverythingExceptKernel.files cat $tmp/Kernel.files | xargs grep -Eho '[A-Z0-9_]+_DEBUG' | sort | uniq > $tmp/Kernel.macros cat $tmp/EverythingExceptKernel.files | xargs grep -Eho '[A-Z0-9_]+_DEBUG' | sort | uniq > $tmp/EverythingExceptKernel.macros comm -23 $tmp/Kernel.macros $tmp/EverythingExceptKernel.macros > $tmp/Kernel.unique comm -1 $tmp/Kernel.macros $tmp/EverythingExceptKernel.macros > $tmp/EverythingExceptKernel.unique cat $tmp/Kernel.unique | awk '{ print "#cmakedefine01 "$1 }' > $tmp/Kernel.header cat $tmp/EverythingExceptKernel.unique | awk '{ print "#cmakedefine01 "$1 }' > $tmp/EverythingExceptKernel.header for macro in $(cat $tmp/Kernel.unique) do cat $tmp/Kernel.files | xargs grep -l $macro >> $tmp/Kernel.new-includes ||: done cat $tmp/Kernel.new-includes | sort > $tmp/Kernel.new-includes.sorted for macro in $(cat $tmp/EverythingExceptKernel.unique) do cat $tmp/Kernel.files | xargs grep -l $macro >> $tmp/Kernel.old-includes ||: done cat $tmp/Kernel.old-includes | sort > $tmp/Kernel.old-includes.sorted comm -23 $tmp/Kernel.new-includes.sorted $tmp/Kernel.old-includes.sorted > $tmp/Kernel.includes.new comm -13 $tmp/Kernel.new-includes.sorted $tmp/Kernel.old-includes.sorted > $tmp/Kernel.includes.old comm -12 $tmp/Kernel.new-includes.sorted $tmp/Kernel.old-includes.sorted > $tmp/Kernel.includes.mixed for file in $(cat $tmp/Kernel.includes.new) do sed -i -E 's/#include <AK\/Debug\.h>/#include <Kernel\/Debug\.h>/' $file done for file in $(cat $tmp/Kernel.includes.mixed) do echo "mixed include in $file, requires manual editing." done
2021-01-25 15:07:10 +00:00
#include <Kernel/Debug.h>
#include <Kernel/InterruptDisabler.h>
#include <Kernel/Panic.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Process.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Sections.h>
Kernel: Introduce the new Time management subsystem This new subsystem includes better abstractions of how time will be handled in the OS. We take advantage of the existing RTC timer to aid in keeping time synchronized. This is standing in contrast to how we handled time-keeping in the kernel, where the PIT was responsible for that function in addition to update the scheduler about ticks. With that new advantage, we can easily change the ticking dynamically and still keep the time synchronized. In the process context, we no longer use a fixed declaration of TICKS_PER_SECOND, but we call the TimeManagement singleton class to provide us the right value. This allows us to use dynamic ticking in the future, a feature known as tickless kernel. The scheduler no longer does by himself the calculation of real time (Unix time), and just calls the TimeManagment singleton class to provide the value. Also, we can use 2 new boot arguments: - the "time" boot argument accpets either the value "modern", or "legacy". If "modern" is specified, the time management subsystem will try to setup HPET. Otherwise, for "legacy" value, the time subsystem will revert to use the PIT & RTC, leaving HPET disabled. If this boot argument is not specified, the default pattern is to try to setup HPET. - the "hpet" boot argumet accepts either the value "periodic" or "nonperiodic". If "periodic" is specified, the HPET will scan for periodic timers, and will assert if none are found. If only one is found, that timer will be assigned for the time-keeping task. If more than one is found, both time-keeping task & scheduler-ticking task will be assigned to periodic timers. If this boot argument is not specified, the default pattern is to try to scan for HPET periodic timers. This boot argument has no effect if HPET is disabled. In hardware context, PIT & RealTimeClock classes are merely inheriting from the HardwareTimer class, and they allow to use the old i8254 (PIT) and RTC devices, managing them via IO ports. By default, the RTC will be programmed to a frequency of 1024Hz. The PIT will be programmed to a frequency close to 1000Hz. About HPET, depending if we need to scan for periodic timers or not, we try to set a frequency close to 1000Hz for the time-keeping timer and scheduler-ticking timer. Also, if possible, we try to enable the Legacy replacement feature of the HPET. This feature if exists, instructs the chipset to disconnect both i8254 (PIT) and RTC. This behavior is observable on QEMU, and was verified against the source code: https://github.com/qemu/qemu/commit/ce967e2f33861b0e17753f97fa4527b5943c94b6 The HPETComparator class is inheriting from HardwareTimer class, and is responsible for an individual HPET comparator, which is essentially a timer. Therefore, it needs to call the singleton HPET class to perform HPET-related operations. The new abstraction of Hardware timers brings an opportunity of more new features in the foreseeable future. For example, we can change the callback function of each hardware timer, thus it makes it possible to swap missions between hardware timers, or to allow to use a hardware timer for other temporary missions (e.g. calibrating the LAPIC timer, measuring the CPU frequency, etc).
2020-03-09 15:03:27 +00:00
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/kstdio.h>
namespace Kernel {
RecursiveSpinlock<LockRank::None> g_scheduler_lock {};
2022-04-01 17:58:27 +00:00
static u32 time_slice_for(Thread const& thread)
{
// One time slice unit == 4ms (assuming 250 ticks/second)
if (thread.is_idle_thread())
return 1;
return 2;
}
READONLY_AFTER_INIT Thread* g_finalizer;
READONLY_AFTER_INIT WaitQueue* g_finalizer_wait_queue;
Atomic<bool> g_finalizer_has_work { false };
READONLY_AFTER_INIT static Process* s_colonel_process;
struct ThreadReadyQueue {
IntrusiveList<&Thread::m_ready_queue_node> thread_list;
};
struct ThreadReadyQueues {
u32 mask {};
static constexpr size_t count = sizeof(mask) * 8;
Array<ThreadReadyQueue, count> queues;
};
static Singleton<SpinlockProtected<ThreadReadyQueues, LockRank::None>> g_ready_queues;
static SpinlockProtected<TotalTimeScheduled, LockRank::None> g_total_time_scheduled {};
static void dump_thread_list(bool = false);
static inline u32 thread_priority_to_priority_index(u32 thread_priority)
{
// Converts the priority in the range of THREAD_PRIORITY_MIN...THREAD_PRIORITY_MAX
// to a index into g_ready_queues where 0 is the highest priority bucket
VERIFY(thread_priority >= THREAD_PRIORITY_MIN && thread_priority <= THREAD_PRIORITY_MAX);
constexpr u32 thread_priority_count = THREAD_PRIORITY_MAX - THREAD_PRIORITY_MIN + 1;
static_assert(thread_priority_count > 0);
auto priority_bucket = ((thread_priority_count - (thread_priority - THREAD_PRIORITY_MIN)) / thread_priority_count) * (ThreadReadyQueues::count - 1);
VERIFY(priority_bucket < ThreadReadyQueues::count);
return priority_bucket;
}
Thread& Scheduler::pull_next_runnable_thread()
{
auto affinity_mask = 1u << Processor::current_id();
return g_ready_queues->with([&](auto& ready_queues) -> Thread& {
auto priority_mask = ready_queues.mask;
while (priority_mask != 0) {
auto priority = bit_scan_forward(priority_mask);
VERIFY(priority > 0);
auto& ready_queue = ready_queues.queues[--priority];
for (auto& thread : ready_queue.thread_list) {
VERIFY(thread.m_runnable_priority == (int)priority);
if (thread.is_active())
continue;
if (!(thread.affinity() & affinity_mask))
continue;
thread.m_runnable_priority = -1;
ready_queue.thread_list.remove(thread);
if (ready_queue.thread_list.is_empty())
ready_queues.mask &= ~(1u << priority);
// Mark it as active because we are using this thread. This is similar
// to comparing it with Processor::current_thread, but when there are
// multiple processors there's no easy way to check whether the thread
// is actually still needed. This prevents accidental finalization when
// a thread is no longer in Running state, but running on another core.
// We need to mark it active here so that this thread won't be
// scheduled on another core if it were to be queued before actually
// switching to it.
// FIXME: Figure out a better way maybe?
thread.set_active(true);
return thread;
}
priority_mask &= ~(1u << priority);
}
return *Processor::idle_thread();
});
}
Thread* Scheduler::peek_next_runnable_thread()
{
auto affinity_mask = 1u << Processor::current_id();
return g_ready_queues->with([&](auto& ready_queues) -> Thread* {
auto priority_mask = ready_queues.mask;
while (priority_mask != 0) {
auto priority = bit_scan_forward(priority_mask);
VERIFY(priority > 0);
auto& ready_queue = ready_queues.queues[--priority];
for (auto& thread : ready_queue.thread_list) {
VERIFY(thread.m_runnable_priority == (int)priority);
if (thread.is_active())
continue;
if (!(thread.affinity() & affinity_mask))
continue;
return &thread;
}
priority_mask &= ~(1u << priority);
}
// Unlike in pull_next_runnable_thread() we don't want to fall back to
// the idle thread. We just want to see if we have any other thread ready
// to be scheduled.
return nullptr;
});
}
bool Scheduler::dequeue_runnable_thread(Thread& thread, bool check_affinity)
{
if (thread.is_idle_thread())
return true;
return g_ready_queues->with([&](auto& ready_queues) {
auto priority = thread.m_runnable_priority;
if (priority < 0) {
VERIFY(!thread.m_ready_queue_node.is_in_list());
return false;
}
if (check_affinity && !(thread.affinity() & (1 << Processor::current_id())))
return false;
VERIFY(ready_queues.mask & (1u << priority));
auto& ready_queue = ready_queues.queues[priority];
thread.m_runnable_priority = -1;
ready_queue.thread_list.remove(thread);
if (ready_queue.thread_list.is_empty())
ready_queues.mask &= ~(1u << priority);
return true;
});
}
void Scheduler::enqueue_runnable_thread(Thread& thread)
{
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
if (thread.is_idle_thread())
return;
auto priority = thread_priority_to_priority_index(thread.priority());
g_ready_queues->with([&](auto& ready_queues) {
VERIFY(thread.m_runnable_priority < 0);
thread.m_runnable_priority = (int)priority;
VERIFY(!thread.m_ready_queue_node.is_in_list());
auto& ready_queue = ready_queues.queues[priority];
bool was_empty = ready_queue.thread_list.is_empty();
ready_queue.thread_list.append(thread);
if (was_empty)
ready_queues.mask |= (1u << priority);
});
}
UNMAP_AFTER_INIT void Scheduler::start()
{
VERIFY_INTERRUPTS_DISABLED();
// We need to acquire our scheduler lock, which will be released
// by the idle thread once control transferred there
g_scheduler_lock.lock();
auto& processor = Processor::current();
VERIFY(processor.is_initialized());
auto& idle_thread = *Processor::idle_thread();
VERIFY(processor.current_thread() == &idle_thread);
idle_thread.set_ticks_left(time_slice_for(idle_thread));
idle_thread.did_schedule();
idle_thread.set_initialized(true);
processor.init_context(idle_thread, false);
idle_thread.set_state(Thread::State::Running);
VERIFY(idle_thread.affinity() == (1u << processor.id()));
processor.initialize_context_switching(idle_thread);
VERIFY_NOT_REACHED();
}
void Scheduler::pick_next()
{
VERIFY_INTERRUPTS_DISABLED();
// Set the in_scheduler flag before acquiring the spinlock. This
// prevents a recursive call into Scheduler::invoke_async upon
// leaving the scheduler lock.
ScopedCritical critical;
Processor::set_current_in_scheduler(true);
ScopeGuard guard(
[]() {
// We may be on a different processor after we got switched
// back to this thread!
VERIFY(Processor::current_in_scheduler());
Processor::set_current_in_scheduler(false);
});
SpinlockLocker lock(g_scheduler_lock);
if constexpr (SCHEDULER_RUNNABLE_DEBUG) {
dump_thread_list();
}
auto& thread_to_schedule = pull_next_runnable_thread();
if constexpr (SCHEDULER_DEBUG) {
dbgln("Scheduler[{}]: Switch to {} @ {:p}",
Processor::current_id(),
thread_to_schedule,
thread_to_schedule.regs().ip());
}
// We need to leave our first critical section before switching context,
// but since we're still holding the scheduler lock we're still in a critical section
critical.leave();
thread_to_schedule.set_ticks_left(time_slice_for(thread_to_schedule));
context_switch(&thread_to_schedule);
}
void Scheduler::yield()
{
InterruptDisabler disabler;
auto const* current_thread = Thread::current();
dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: yielding thread {} in_irq={}", Processor::current_id(), *current_thread, Processor::current_in_irq());
VERIFY(current_thread != nullptr);
if (Processor::current_in_irq() || Processor::in_critical()) {
// If we're handling an IRQ we can't switch context, or we're in
// a critical section where we don't want to switch contexts, then
// delay until exiting the trap or critical section
Processor::current().invoke_scheduler_async();
return;
}
Scheduler::pick_next();
}
void Scheduler::context_switch(Thread* thread)
{
thread->did_schedule();
auto* from_thread = Thread::current();
VERIFY(from_thread);
if (from_thread == thread)
return;
// If the last process hasn't blocked (still marked as running),
// mark it as runnable for the next round.
if (from_thread->state() == Thread::State::Running)
from_thread->set_state(Thread::State::Runnable);
#ifdef LOG_EVERY_CONTEXT_SWITCH
auto const msg = "Scheduler[{}]: {} -> {} [prio={}] {:p}";
dbgln(msg,
Processor::current_id(), from_thread->tid().value(),
thread->tid().value(), thread->priority(), thread->regs().ip());
#endif
auto& proc = Processor::current();
if (!thread->is_initialized()) {
proc.init_context(*thread, false);
thread->set_initialized(true);
}
thread->set_state(Thread::State::Running);
PerformanceManager::add_context_switch_perf_event(*from_thread, *thread);
proc.switch_context(from_thread, thread);
// NOTE: from_thread at this point reflects the thread we were
// switched from, and thread reflects Thread::current()
enter_current(*from_thread);
VERIFY(thread == Thread::current());
{
SpinlockLocker lock(thread->get_lock());
thread->dispatch_one_pending_signal();
}
}
void Scheduler::enter_current(Thread& prev_thread)
{
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
// We already recorded the scheduled time when entering the trap, so this merely accounts for the kernel time since then
auto scheduler_time = TimeManagement::scheduler_current_time();
prev_thread.update_time_scheduled(scheduler_time, true, true);
auto* current_thread = Thread::current();
current_thread->update_time_scheduled(scheduler_time, true, false);
// NOTE: When doing an exec(), we will context switch from and to the same thread!
// In that case, we must not mark the previous thread as inactive.
if (&prev_thread != current_thread)
prev_thread.set_active(false);
if (prev_thread.state() == Thread::State::Dying) {
// If the thread we switched from is marked as dying, then notify
// the finalizer. Note that as soon as we leave the scheduler lock
// the finalizer may free from_thread!
notify_finalizer();
}
}
void Scheduler::leave_on_first_switch(InterruptsState previous_interrupts_state)
{
2020-10-02 21:14:37 +00:00
// This is called when a thread is switched into for the first time.
// At this point, enter_current has already be called, but because
// Scheduler::context_switch is not in the call stack we need to
// clean up and release locks manually here
g_scheduler_lock.unlock(previous_interrupts_state);
VERIFY(Processor::current_in_scheduler());
Processor::set_current_in_scheduler(false);
}
void Scheduler::prepare_after_exec()
{
// This is called after exec() when doing a context "switch" into
// the new process. This is called from Processor::assume_context
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
VERIFY(!Processor::current_in_scheduler());
Processor::set_current_in_scheduler(true);
}
void Scheduler::prepare_for_idle_loop()
{
// This is called when the CPU finished setting up the idle loop
2022-03-22 11:24:11 +00:00
// and is about to run it. We need to acquire the scheduler lock
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
g_scheduler_lock.lock();
VERIFY(!Processor::current_in_scheduler());
Processor::set_current_in_scheduler(true);
}
Process* Scheduler::colonel()
{
VERIFY(s_colonel_process);
return s_colonel_process;
}
UNMAP_AFTER_INIT void Scheduler::initialize()
{
VERIFY(Processor::is_initialized()); // sanity check
VERIFY(TimeManagement::is_initialized());
LockRefPtr<Thread> idle_thread;
g_finalizer_wait_queue = new WaitQueue;
g_finalizer_has_work.store(false, AK::MemoryOrder::memory_order_release);
s_colonel_process = Process::create_kernel_process(idle_thread, KString::must_create("colonel"sv), idle_loop, nullptr, 1, Process::RegisterProcess::No).leak_ref();
VERIFY(s_colonel_process);
VERIFY(idle_thread);
idle_thread->set_priority(THREAD_PRIORITY_MIN);
idle_thread->set_name(KString::must_create("Idle Task #0"sv));
set_idle_thread(idle_thread);
}
UNMAP_AFTER_INIT void Scheduler::set_idle_thread(Thread* idle_thread)
{
idle_thread->set_idle_thread();
Processor::current().set_idle_thread(*idle_thread);
Processor::set_current_thread(*idle_thread);
}
UNMAP_AFTER_INIT Thread* Scheduler::create_ap_idle_thread(u32 cpu)
{
VERIFY(cpu != 0);
// This function is called on the bsp, but creates an idle thread for another AP
VERIFY(Processor::is_bootstrap_processor());
VERIFY(s_colonel_process);
Thread* idle_thread = s_colonel_process->create_kernel_thread(idle_loop, nullptr, THREAD_PRIORITY_MIN, MUST(KString::formatted("idle thread #{}", cpu)), 1 << cpu, false);
VERIFY(idle_thread);
return idle_thread;
}
void Scheduler::add_time_scheduled(u64 time_to_add, bool is_kernel)
{
g_total_time_scheduled.with([&](auto& total_time_scheduled) {
total_time_scheduled.total += time_to_add;
if (is_kernel)
total_time_scheduled.total_kernel += time_to_add;
});
}
2022-04-01 17:58:27 +00:00
void Scheduler::timer_tick(RegisterState const& regs)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(Processor::current_in_irq());
auto* current_thread = Processor::current_thread();
if (!current_thread)
return;
// Sanity checks
VERIFY(current_thread->current_trap());
VERIFY(current_thread->current_trap()->regs == &regs);
if (current_thread->process().is_kernel_process()) {
// Because the previous mode when entering/exiting kernel threads never changes
// we never update the time scheduled. So we need to update it manually on the
// timer interrupt
current_thread->update_time_scheduled(TimeManagement::scheduler_current_time(), true, false);
}
if (current_thread->previous_mode() == ExecutionMode::User && current_thread->should_die() && !current_thread->is_blocked()) {
SpinlockLocker scheduler_lock(g_scheduler_lock);
dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: Terminating user mode thread {}", Processor::current_id(), *current_thread);
current_thread->set_state(Thread::State::Dying);
Processor::current().invoke_scheduler_async();
return;
}
if (current_thread->tick())
return;
if (!current_thread->is_idle_thread() && !peek_next_runnable_thread()) {
// If no other thread is ready to be scheduled we don't need to
// switch to the idle thread. Just give the current thread another
// time slice and let it run!
current_thread->set_ticks_left(time_slice_for(*current_thread));
current_thread->did_schedule();
dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: No other threads ready, give {} another timeslice", Processor::current_id(), *current_thread);
return;
}
VERIFY_INTERRUPTS_DISABLED();
VERIFY(Processor::current_in_irq());
Processor::current().invoke_scheduler_async();
}
void Scheduler::invoke_async()
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(!Processor::current_in_irq());
// Since this function is called when leaving critical sections (such
2021-08-21 23:37:17 +00:00
// as a Spinlock), we need to check if we're not already doing this
// to prevent recursion
if (!Processor::current_in_scheduler())
pick_next();
}
void Scheduler::notify_finalizer()
{
2021-12-29 00:03:09 +00:00
if (!g_finalizer_has_work.exchange(true, AK::MemoryOrder::memory_order_acq_rel))
g_finalizer_wait_queue->wake_all();
}
void Scheduler::idle_loop(void*)
{
auto& proc = Processor::current();
dbgln("Scheduler[{}]: idle loop running", proc.id());
VERIFY(Processor::are_interrupts_enabled());
for (;;) {
proc.idle_begin();
proc.wait_for_interrupt();
proc.idle_end();
VERIFY_INTERRUPTS_ENABLED();
yield();
}
}
void Scheduler::dump_scheduler_state(bool with_stack_traces)
{
dump_thread_list(with_stack_traces);
}
2021-06-12 13:32:56 +00:00
bool Scheduler::is_initialized()
{
2021-06-28 15:06:26 +00:00
// The scheduler is initialized iff the idle thread exists
2021-06-12 13:32:56 +00:00
return Processor::idle_thread() != nullptr;
}
TotalTimeScheduled Scheduler::get_total_time_scheduled()
{
return g_total_time_scheduled.with([&](auto& total_time_scheduled) { return total_time_scheduled; });
}
void dump_thread_list(bool with_stack_traces)
{
dbgln("Scheduler thread list for processor {}:", Processor::current_id());
auto get_eip = [](Thread& thread) -> u32 {
if (!thread.current_trap())
return thread.regs().ip();
return thread.get_register_dump_from_stack().ip();
};
Thread::for_each([&](Thread& thread) {
auto color = thread.process().is_kernel_process() ? "\x1b[34;1m"sv : "\x1b[33;1m"sv;
switch (thread.state()) {
case Thread::State::Dying:
dmesgln(" {}{:30}\x1b[0m @ {:08x} is {:14} (Finalizable: {}, nsched: {})",
color,
thread,
get_eip(thread),
thread.state_string(),
thread.is_finalizable(),
thread.times_scheduled());
break;
default:
dmesgln(" {}{:30}\x1b[0m @ {:08x} is {:14} (Pr:{:2}, nsched: {})",
color,
thread,
get_eip(thread),
thread.state_string(),
thread.priority(),
thread.times_scheduled());
break;
}
if (thread.state() == Thread::State::Blocked && thread.blocking_mutex()) {
dmesgln(" Blocking on Mutex {:#x} ({})", thread.blocking_mutex(), thread.blocking_mutex()->name());
}
if (thread.state() == Thread::State::Blocked && thread.blocker()) {
dmesgln(" Blocking on Blocker {:#x}", thread.blocker());
}
#if LOCK_DEBUG
thread.for_each_held_lock([](auto const& entry) {
dmesgln(" Holding lock {:#x} ({}) at {}", entry.lock, entry.lock->name(), entry.lock_location);
});
#endif
if (with_stack_traces) {
auto trace_or_error = thread.backtrace();
if (!trace_or_error.is_error()) {
auto trace = trace_or_error.release_value();
dbgln("Backtrace:");
kernelputstr(trace->characters(), trace->length());
}
}
return IterationDecision::Continue;
});
}
}