2023-04-24 10:25:14 +00:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2023, Andreas Kling <kling@serenityos.org>
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <AK/IDAllocator.h>
|
|
|
|
#include <AK/Singleton.h>
|
|
|
|
#include <AK/TemporaryChange.h>
|
|
|
|
#include <AK/Time.h>
|
|
|
|
#include <AK/WeakPtr.h>
|
|
|
|
#include <LibCore/Event.h>
|
|
|
|
#include <LibCore/EventLoopImplementationUnix.h>
|
|
|
|
#include <LibCore/Notifier.h>
|
|
|
|
#include <LibCore/Object.h>
|
|
|
|
#include <LibCore/Socket.h>
|
|
|
|
#include <LibCore/System.h>
|
|
|
|
#include <LibCore/ThreadEventQueue.h>
|
|
|
|
#include <sys/select.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
|
|
|
|
namespace Core {
|
|
|
|
|
|
|
|
struct ThreadData;
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
thread_local ThreadData* s_thread_data;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct EventLoopTimer {
|
|
|
|
int timer_id { 0 };
|
2023-03-13 15:30:34 +00:00
|
|
|
Duration interval;
|
2023-03-17 18:50:39 +00:00
|
|
|
MonotonicTime fire_time { MonotonicTime::now_coarse() };
|
2023-04-24 10:25:14 +00:00
|
|
|
bool should_reload { false };
|
|
|
|
TimerShouldFireWhenNotVisible fire_when_not_visible { TimerShouldFireWhenNotVisible::No };
|
|
|
|
WeakPtr<Object> owner;
|
|
|
|
|
2023-03-17 18:50:39 +00:00
|
|
|
void reload(MonotonicTime const& now) { fire_time = now + interval; }
|
|
|
|
bool has_expired(MonotonicTime const& now) const { return now > fire_time; }
|
2023-04-24 10:25:14 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
struct ThreadData {
|
|
|
|
static ThreadData& the()
|
|
|
|
{
|
|
|
|
if (!s_thread_data) {
|
|
|
|
// FIXME: Don't leak this.
|
|
|
|
s_thread_data = new ThreadData;
|
|
|
|
}
|
|
|
|
return *s_thread_data;
|
|
|
|
}
|
|
|
|
|
|
|
|
ThreadData()
|
|
|
|
{
|
|
|
|
pid = getpid();
|
|
|
|
initialize_wake_pipe();
|
|
|
|
}
|
|
|
|
|
|
|
|
void initialize_wake_pipe()
|
|
|
|
{
|
|
|
|
if (wake_pipe_fds[0] != -1)
|
|
|
|
close(wake_pipe_fds[0]);
|
|
|
|
if (wake_pipe_fds[1] != -1)
|
|
|
|
close(wake_pipe_fds[1]);
|
|
|
|
|
|
|
|
#if defined(SOCK_NONBLOCK)
|
|
|
|
int rc = pipe2(wake_pipe_fds, O_CLOEXEC);
|
|
|
|
#else
|
|
|
|
int rc = pipe(wake_pipe_fds);
|
|
|
|
fcntl(wake_pipe_fds[0], F_SETFD, FD_CLOEXEC);
|
|
|
|
fcntl(wake_pipe_fds[1], F_SETFD, FD_CLOEXEC);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
VERIFY(rc == 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Each thread has its own timers, notifiers and a wake pipe.
|
|
|
|
HashMap<int, NonnullOwnPtr<EventLoopTimer>> timers;
|
|
|
|
HashTable<Notifier*> notifiers;
|
|
|
|
|
|
|
|
// The wake pipe is used to notify another event loop that someone has called wake(), or a signal has been received.
|
|
|
|
// wake() writes 0i32 into the pipe, signals write the signal number (guaranteed non-zero).
|
|
|
|
int wake_pipe_fds[2] { -1, -1 };
|
|
|
|
|
|
|
|
pid_t pid { 0 };
|
|
|
|
|
|
|
|
IDAllocator id_allocator;
|
|
|
|
};
|
|
|
|
|
|
|
|
EventLoopImplementationUnix::EventLoopImplementationUnix()
|
|
|
|
: m_wake_pipe_fds(&ThreadData::the().wake_pipe_fds)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
EventLoopImplementationUnix::~EventLoopImplementationUnix() = default;
|
|
|
|
|
|
|
|
int EventLoopImplementationUnix::exec()
|
|
|
|
{
|
|
|
|
for (;;) {
|
|
|
|
if (m_exit_requested)
|
|
|
|
return m_exit_code;
|
|
|
|
pump(PumpMode::WaitForEvents);
|
|
|
|
}
|
|
|
|
VERIFY_NOT_REACHED();
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t EventLoopImplementationUnix::pump(PumpMode mode)
|
|
|
|
{
|
2023-04-25 15:38:48 +00:00
|
|
|
static_cast<EventLoopManagerUnix&>(EventLoopManager::the()).wait_for_events(mode);
|
|
|
|
return ThreadEventQueue::current().process();
|
2023-04-24 10:25:14 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void EventLoopImplementationUnix::quit(int code)
|
|
|
|
{
|
|
|
|
m_exit_requested = true;
|
|
|
|
m_exit_code = code;
|
|
|
|
}
|
|
|
|
|
|
|
|
void EventLoopImplementationUnix::unquit()
|
|
|
|
{
|
|
|
|
m_exit_requested = false;
|
|
|
|
m_exit_code = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool EventLoopImplementationUnix::was_exit_requested() const
|
|
|
|
{
|
|
|
|
return m_exit_requested;
|
|
|
|
}
|
|
|
|
|
2023-04-26 16:51:07 +00:00
|
|
|
void EventLoopImplementationUnix::post_event(Object& receiver, NonnullOwnPtr<Event>&& event)
|
|
|
|
{
|
|
|
|
m_thread_event_queue.post_event(receiver, move(event));
|
|
|
|
if (&m_thread_event_queue != &ThreadEventQueue::current())
|
|
|
|
wake();
|
|
|
|
}
|
|
|
|
|
2023-04-24 10:25:14 +00:00
|
|
|
void EventLoopImplementationUnix::wake()
|
|
|
|
{
|
|
|
|
int wake_event = 0;
|
|
|
|
MUST(Core::System::write((*m_wake_pipe_fds)[1], { &wake_event, sizeof(wake_event) }));
|
|
|
|
}
|
|
|
|
|
2023-04-25 15:38:48 +00:00
|
|
|
void EventLoopManagerUnix::wait_for_events(EventLoopImplementation::PumpMode mode)
|
2023-04-24 10:25:14 +00:00
|
|
|
{
|
|
|
|
auto& thread_data = ThreadData::the();
|
|
|
|
|
|
|
|
fd_set read_fds {};
|
|
|
|
fd_set write_fds {};
|
|
|
|
retry:
|
|
|
|
int max_fd = 0;
|
|
|
|
auto add_fd_to_set = [&max_fd](int fd, fd_set& set) {
|
|
|
|
FD_SET(fd, &set);
|
|
|
|
if (fd > max_fd)
|
|
|
|
max_fd = fd;
|
|
|
|
};
|
|
|
|
|
|
|
|
// The wake pipe informs us of POSIX signals as well as manual calls to wake()
|
|
|
|
add_fd_to_set(thread_data.wake_pipe_fds[0], read_fds);
|
|
|
|
|
|
|
|
for (auto& notifier : thread_data.notifiers) {
|
|
|
|
if (notifier->type() == Notifier::Type::Read)
|
|
|
|
add_fd_to_set(notifier->fd(), read_fds);
|
|
|
|
if (notifier->type() == Notifier::Type::Write)
|
|
|
|
add_fd_to_set(notifier->fd(), write_fds);
|
|
|
|
if (notifier->type() == Notifier::Type::Exceptional)
|
|
|
|
TODO();
|
|
|
|
}
|
|
|
|
|
|
|
|
bool has_pending_events = ThreadEventQueue::current().has_pending_events();
|
|
|
|
|
|
|
|
// Figure out how long to wait at maximum.
|
|
|
|
// This mainly depends on the PumpMode and whether we have pending events, but also the next expiring timer.
|
2023-03-17 18:50:39 +00:00
|
|
|
MonotonicTime now = MonotonicTime::now_coarse();
|
2023-04-24 10:25:14 +00:00
|
|
|
struct timeval timeout = { 0, 0 };
|
|
|
|
bool should_wait_forever = false;
|
2023-04-25 15:38:48 +00:00
|
|
|
if (mode == EventLoopImplementation::PumpMode::WaitForEvents && !has_pending_events) {
|
2023-04-24 10:25:14 +00:00
|
|
|
auto next_timer_expiration = get_next_timer_expiration();
|
|
|
|
if (next_timer_expiration.has_value()) {
|
2023-03-17 18:50:39 +00:00
|
|
|
now = MonotonicTime::now();
|
2023-04-24 10:25:14 +00:00
|
|
|
auto computed_timeout = next_timer_expiration.value() - now;
|
|
|
|
if (computed_timeout.is_negative())
|
2023-03-13 15:30:34 +00:00
|
|
|
computed_timeout = Duration::zero();
|
2023-04-24 10:25:14 +00:00
|
|
|
timeout = computed_timeout.to_timeval();
|
|
|
|
} else {
|
|
|
|
should_wait_forever = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
try_select_again:
|
|
|
|
// select() and wait for file system events, calls to wake(), POSIX signals, or timer expirations.
|
|
|
|
int marked_fd_count = select(max_fd + 1, &read_fds, &write_fds, nullptr, should_wait_forever ? nullptr : &timeout);
|
|
|
|
// Because POSIX, we might spuriously return from select() with EINTR; just select again.
|
|
|
|
if (marked_fd_count < 0) {
|
|
|
|
int saved_errno = errno;
|
2023-04-25 15:38:48 +00:00
|
|
|
if (saved_errno == EINTR)
|
2023-04-24 10:25:14 +00:00
|
|
|
goto try_select_again;
|
|
|
|
dbgln("EventLoopImplementationUnix::wait_for_events: {} ({}: {})", marked_fd_count, saved_errno, strerror(saved_errno));
|
|
|
|
VERIFY_NOT_REACHED();
|
|
|
|
}
|
|
|
|
|
|
|
|
// We woke up due to a call to wake() or a POSIX signal.
|
|
|
|
// Handle signals and see whether we need to handle events as well.
|
|
|
|
if (FD_ISSET(thread_data.wake_pipe_fds[0], &read_fds)) {
|
|
|
|
int wake_events[8];
|
|
|
|
ssize_t nread;
|
|
|
|
// We might receive another signal while read()ing here. The signal will go to the handle_signal properly,
|
|
|
|
// but we get interrupted. Therefore, just retry while we were interrupted.
|
|
|
|
do {
|
|
|
|
errno = 0;
|
|
|
|
nread = read(thread_data.wake_pipe_fds[0], wake_events, sizeof(wake_events));
|
|
|
|
if (nread == 0)
|
|
|
|
break;
|
|
|
|
} while (nread < 0 && errno == EINTR);
|
|
|
|
if (nread < 0) {
|
|
|
|
perror("EventLoopImplementationUnix::wait_for_events: read from wake pipe");
|
|
|
|
VERIFY_NOT_REACHED();
|
|
|
|
}
|
|
|
|
VERIFY(nread > 0);
|
|
|
|
bool wake_requested = false;
|
|
|
|
int event_count = nread / sizeof(wake_events[0]);
|
|
|
|
for (int i = 0; i < event_count; i++) {
|
|
|
|
if (wake_events[i] != 0)
|
|
|
|
dispatch_signal(wake_events[i]);
|
|
|
|
else
|
|
|
|
wake_requested = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!wake_requested && nread == sizeof(wake_events))
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!thread_data.timers.is_empty()) {
|
2023-03-17 18:50:39 +00:00
|
|
|
now = MonotonicTime::now_coarse();
|
2023-04-24 10:25:14 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Handle expired timers.
|
|
|
|
for (auto& it : thread_data.timers) {
|
|
|
|
auto& timer = *it.value;
|
|
|
|
if (!timer.has_expired(now))
|
|
|
|
continue;
|
|
|
|
auto owner = timer.owner.strong_ref();
|
|
|
|
if (timer.fire_when_not_visible == TimerShouldFireWhenNotVisible::No
|
|
|
|
&& owner && !owner->is_visible_for_timer_purposes()) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (owner)
|
|
|
|
ThreadEventQueue::current().post_event(*owner, make<TimerEvent>(timer.timer_id));
|
|
|
|
if (timer.should_reload) {
|
|
|
|
timer.reload(now);
|
|
|
|
} else {
|
|
|
|
// FIXME: Support removing expired timers that don't want to reload.
|
|
|
|
VERIFY_NOT_REACHED();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!marked_fd_count)
|
|
|
|
return;
|
|
|
|
|
|
|
|
// Handle file system notifiers by making them normal events.
|
|
|
|
for (auto& notifier : thread_data.notifiers) {
|
|
|
|
if (notifier->type() == Notifier::Type::Read && FD_ISSET(notifier->fd(), &read_fds)) {
|
|
|
|
ThreadEventQueue::current().post_event(*notifier, make<NotifierActivationEvent>(notifier->fd()));
|
|
|
|
}
|
|
|
|
if (notifier->type() == Notifier::Type::Write && FD_ISSET(notifier->fd(), &write_fds)) {
|
|
|
|
ThreadEventQueue::current().post_event(*notifier, make<NotifierActivationEvent>(notifier->fd()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
class SignalHandlers : public RefCounted<SignalHandlers> {
|
|
|
|
AK_MAKE_NONCOPYABLE(SignalHandlers);
|
|
|
|
AK_MAKE_NONMOVABLE(SignalHandlers);
|
|
|
|
|
|
|
|
public:
|
|
|
|
SignalHandlers(int signal_number, void (*handle_signal)(int));
|
|
|
|
~SignalHandlers();
|
|
|
|
|
|
|
|
void dispatch();
|
|
|
|
int add(Function<void(int)>&& handler);
|
|
|
|
bool remove(int handler_id);
|
|
|
|
|
|
|
|
bool is_empty() const
|
|
|
|
{
|
|
|
|
if (m_calling_handlers) {
|
|
|
|
for (auto& handler : m_handlers_pending) {
|
|
|
|
if (handler.value)
|
|
|
|
return false; // an add is pending
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return m_handlers.is_empty();
|
|
|
|
}
|
|
|
|
|
|
|
|
bool have(int handler_id) const
|
|
|
|
{
|
|
|
|
if (m_calling_handlers) {
|
|
|
|
auto it = m_handlers_pending.find(handler_id);
|
|
|
|
if (it != m_handlers_pending.end()) {
|
|
|
|
if (!it->value)
|
|
|
|
return false; // a deletion is pending
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return m_handlers.contains(handler_id);
|
|
|
|
}
|
|
|
|
|
|
|
|
int m_signal_number;
|
|
|
|
void (*m_original_handler)(int); // TODO: can't use sighandler_t?
|
|
|
|
HashMap<int, Function<void(int)>> m_handlers;
|
|
|
|
HashMap<int, Function<void(int)>> m_handlers_pending;
|
|
|
|
bool m_calling_handlers { false };
|
|
|
|
};
|
|
|
|
|
|
|
|
struct SignalHandlersInfo {
|
|
|
|
HashMap<int, NonnullRefPtr<SignalHandlers>> signal_handlers;
|
|
|
|
int next_signal_id { 0 };
|
|
|
|
};
|
|
|
|
|
|
|
|
static Singleton<SignalHandlersInfo> s_signals;
|
|
|
|
template<bool create_if_null = true>
|
|
|
|
inline SignalHandlersInfo* signals_info()
|
|
|
|
{
|
|
|
|
return s_signals.ptr();
|
|
|
|
}
|
|
|
|
|
2023-04-25 15:38:48 +00:00
|
|
|
void EventLoopManagerUnix::dispatch_signal(int signal_number)
|
2023-04-24 10:25:14 +00:00
|
|
|
{
|
|
|
|
auto& info = *signals_info();
|
|
|
|
auto handlers = info.signal_handlers.find(signal_number);
|
|
|
|
if (handlers != info.signal_handlers.end()) {
|
|
|
|
// Make sure we bump the ref count while dispatching the handlers!
|
|
|
|
// This allows a handler to unregister/register while the handlers
|
|
|
|
// are being called!
|
|
|
|
auto handler = handlers->value;
|
|
|
|
handler->dispatch();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void EventLoopImplementationUnix::notify_forked_and_in_child()
|
|
|
|
{
|
|
|
|
auto& thread_data = ThreadData::the();
|
|
|
|
thread_data.timers.clear();
|
|
|
|
thread_data.notifiers.clear();
|
|
|
|
thread_data.initialize_wake_pipe();
|
|
|
|
if (auto* info = signals_info<false>()) {
|
|
|
|
info->signal_handlers.clear();
|
|
|
|
info->next_signal_id = 0;
|
|
|
|
}
|
|
|
|
thread_data.pid = getpid();
|
|
|
|
}
|
|
|
|
|
2023-03-17 18:50:39 +00:00
|
|
|
Optional<MonotonicTime> EventLoopManagerUnix::get_next_timer_expiration()
|
2023-04-24 10:25:14 +00:00
|
|
|
{
|
2023-03-17 18:50:39 +00:00
|
|
|
auto now = MonotonicTime::now_coarse();
|
|
|
|
Optional<MonotonicTime> soonest {};
|
2023-04-24 10:25:14 +00:00
|
|
|
for (auto& it : ThreadData::the().timers) {
|
|
|
|
auto& fire_time = it.value->fire_time;
|
|
|
|
auto owner = it.value->owner.strong_ref();
|
|
|
|
if (it.value->fire_when_not_visible == TimerShouldFireWhenNotVisible::No
|
|
|
|
&& owner && !owner->is_visible_for_timer_purposes()) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
// OPTIMIZATION: If we have a timer that needs to fire right away, we can stop looking here.
|
|
|
|
// FIXME: This whole operation could be O(1) with a better data structure.
|
|
|
|
if (fire_time < now)
|
|
|
|
return now;
|
|
|
|
if (!soonest.has_value() || fire_time < soonest.value())
|
|
|
|
soonest = fire_time;
|
|
|
|
}
|
|
|
|
return soonest;
|
|
|
|
}
|
|
|
|
|
|
|
|
SignalHandlers::SignalHandlers(int signal_number, void (*handle_signal)(int))
|
|
|
|
: m_signal_number(signal_number)
|
|
|
|
, m_original_handler(signal(signal_number, handle_signal))
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
SignalHandlers::~SignalHandlers()
|
|
|
|
{
|
|
|
|
signal(m_signal_number, m_original_handler);
|
|
|
|
}
|
|
|
|
|
|
|
|
void SignalHandlers::dispatch()
|
|
|
|
{
|
|
|
|
TemporaryChange change(m_calling_handlers, true);
|
|
|
|
for (auto& handler : m_handlers)
|
|
|
|
handler.value(m_signal_number);
|
|
|
|
if (!m_handlers_pending.is_empty()) {
|
|
|
|
// Apply pending adds/removes
|
|
|
|
for (auto& handler : m_handlers_pending) {
|
|
|
|
if (handler.value) {
|
|
|
|
auto result = m_handlers.set(handler.key, move(handler.value));
|
|
|
|
VERIFY(result == AK::HashSetResult::InsertedNewEntry);
|
|
|
|
} else {
|
|
|
|
m_handlers.remove(handler.key);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
m_handlers_pending.clear();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int SignalHandlers::add(Function<void(int)>&& handler)
|
|
|
|
{
|
|
|
|
int id = ++signals_info()->next_signal_id; // TODO: worry about wrapping and duplicates?
|
|
|
|
if (m_calling_handlers)
|
|
|
|
m_handlers_pending.set(id, move(handler));
|
|
|
|
else
|
|
|
|
m_handlers.set(id, move(handler));
|
|
|
|
return id;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool SignalHandlers::remove(int handler_id)
|
|
|
|
{
|
|
|
|
VERIFY(handler_id != 0);
|
|
|
|
if (m_calling_handlers) {
|
|
|
|
auto it = m_handlers.find(handler_id);
|
|
|
|
if (it != m_handlers.end()) {
|
|
|
|
// Mark pending remove
|
|
|
|
m_handlers_pending.set(handler_id, {});
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
it = m_handlers_pending.find(handler_id);
|
|
|
|
if (it != m_handlers_pending.end()) {
|
|
|
|
if (!it->value)
|
|
|
|
return false; // already was marked as deleted
|
|
|
|
it->value = nullptr;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return m_handlers.remove(handler_id);
|
|
|
|
}
|
|
|
|
|
2023-04-25 15:38:48 +00:00
|
|
|
void EventLoopManagerUnix::handle_signal(int signal_number)
|
2023-04-24 10:25:14 +00:00
|
|
|
{
|
|
|
|
VERIFY(signal_number != 0);
|
|
|
|
auto& thread_data = ThreadData::the();
|
|
|
|
// We MUST check if the current pid still matches, because there
|
|
|
|
// is a window between fork() and exec() where a signal delivered
|
|
|
|
// to our fork could be inadvertently routed to the parent process!
|
|
|
|
if (getpid() == thread_data.pid) {
|
|
|
|
int nwritten = write(thread_data.wake_pipe_fds[1], &signal_number, sizeof(signal_number));
|
|
|
|
if (nwritten < 0) {
|
|
|
|
perror("EventLoopImplementationUnix::register_signal: write");
|
|
|
|
VERIFY_NOT_REACHED();
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// We're a fork who received a signal, reset thread_data.pid.
|
|
|
|
thread_data.pid = getpid();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-04-25 15:38:48 +00:00
|
|
|
int EventLoopManagerUnix::register_signal(int signal_number, Function<void(int)> handler)
|
2023-04-24 10:25:14 +00:00
|
|
|
{
|
|
|
|
VERIFY(signal_number != 0);
|
|
|
|
auto& info = *signals_info();
|
|
|
|
auto handlers = info.signal_handlers.find(signal_number);
|
|
|
|
if (handlers == info.signal_handlers.end()) {
|
2023-04-25 15:38:48 +00:00
|
|
|
auto signal_handlers = adopt_ref(*new SignalHandlers(signal_number, EventLoopManagerUnix::handle_signal));
|
2023-04-24 10:25:14 +00:00
|
|
|
auto handler_id = signal_handlers->add(move(handler));
|
|
|
|
info.signal_handlers.set(signal_number, move(signal_handlers));
|
|
|
|
return handler_id;
|
|
|
|
} else {
|
|
|
|
return handlers->value->add(move(handler));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-04-25 15:38:48 +00:00
|
|
|
void EventLoopManagerUnix::unregister_signal(int handler_id)
|
2023-04-24 10:25:14 +00:00
|
|
|
{
|
|
|
|
VERIFY(handler_id != 0);
|
|
|
|
int remove_signal_number = 0;
|
|
|
|
auto& info = *signals_info();
|
|
|
|
for (auto& h : info.signal_handlers) {
|
|
|
|
auto& handlers = *h.value;
|
|
|
|
if (handlers.remove(handler_id)) {
|
|
|
|
if (handlers.is_empty())
|
|
|
|
remove_signal_number = handlers.m_signal_number;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (remove_signal_number != 0)
|
|
|
|
info.signal_handlers.remove(remove_signal_number);
|
|
|
|
}
|
|
|
|
|
2023-04-25 15:38:48 +00:00
|
|
|
int EventLoopManagerUnix::register_timer(Object& object, int milliseconds, bool should_reload, TimerShouldFireWhenNotVisible fire_when_not_visible)
|
2023-04-24 10:25:14 +00:00
|
|
|
{
|
|
|
|
VERIFY(milliseconds >= 0);
|
|
|
|
auto& thread_data = ThreadData::the();
|
|
|
|
auto timer = make<EventLoopTimer>();
|
|
|
|
timer->owner = object;
|
2023-03-13 15:30:34 +00:00
|
|
|
timer->interval = Duration::from_milliseconds(milliseconds);
|
2023-03-17 18:50:39 +00:00
|
|
|
timer->reload(MonotonicTime::now_coarse());
|
2023-04-24 10:25:14 +00:00
|
|
|
timer->should_reload = should_reload;
|
|
|
|
timer->fire_when_not_visible = fire_when_not_visible;
|
|
|
|
int timer_id = thread_data.id_allocator.allocate();
|
|
|
|
timer->timer_id = timer_id;
|
|
|
|
thread_data.timers.set(timer_id, move(timer));
|
|
|
|
return timer_id;
|
|
|
|
}
|
|
|
|
|
2023-04-25 15:38:48 +00:00
|
|
|
bool EventLoopManagerUnix::unregister_timer(int timer_id)
|
2023-04-24 10:25:14 +00:00
|
|
|
{
|
|
|
|
auto& thread_data = ThreadData::the();
|
|
|
|
thread_data.id_allocator.deallocate(timer_id);
|
|
|
|
return thread_data.timers.remove(timer_id);
|
|
|
|
}
|
|
|
|
|
2023-04-25 15:38:48 +00:00
|
|
|
void EventLoopManagerUnix::register_notifier(Notifier& notifier)
|
2023-04-24 10:25:14 +00:00
|
|
|
{
|
|
|
|
ThreadData::the().notifiers.set(¬ifier);
|
|
|
|
}
|
|
|
|
|
2023-04-25 15:38:48 +00:00
|
|
|
void EventLoopManagerUnix::unregister_notifier(Notifier& notifier)
|
2023-04-24 10:25:14 +00:00
|
|
|
{
|
|
|
|
ThreadData::the().notifiers.remove(¬ifier);
|
|
|
|
}
|
|
|
|
|
2023-04-25 15:38:48 +00:00
|
|
|
void EventLoopManagerUnix::did_post_event()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
EventLoopManagerUnix::~EventLoopManagerUnix() = default;
|
|
|
|
|
|
|
|
NonnullOwnPtr<EventLoopImplementation> EventLoopManagerUnix::make_implementation()
|
2023-04-25 14:53:07 +00:00
|
|
|
{
|
2023-04-25 15:38:48 +00:00
|
|
|
return adopt_own(*new EventLoopImplementationUnix);
|
2023-04-25 14:53:07 +00:00
|
|
|
}
|
|
|
|
|
2023-04-24 10:25:14 +00:00
|
|
|
}
|