2020-01-18 08:38:21 +00:00
|
|
|
/*
|
2021-02-08 14:45:40 +00:00
|
|
|
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
|
2020-01-18 08:38:21 +00:00
|
|
|
*
|
2021-04-22 08:24:48 +00:00
|
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
2020-01-18 08:38:21 +00:00
|
|
|
*/
|
|
|
|
|
2018-10-16 09:01:38 +00:00
|
|
|
#pragma once
|
|
|
|
|
2021-05-16 09:36:52 +00:00
|
|
|
#include <AK/Concepts.h>
|
2020-02-16 01:01:42 +00:00
|
|
|
#include <AK/HashMap.h>
|
2021-06-06 21:40:03 +00:00
|
|
|
#include <AK/IntrusiveList.h>
|
2021-07-24 16:43:29 +00:00
|
|
|
#include <AK/IntrusiveListRelaxedConst.h>
|
2020-08-02 02:04:56 +00:00
|
|
|
#include <AK/NonnullRefPtrVector.h>
|
2019-09-27 12:19:07 +00:00
|
|
|
#include <AK/String.h>
|
2020-07-31 14:28:37 +00:00
|
|
|
#include <AK/Userspace.h>
|
2020-02-24 12:24:30 +00:00
|
|
|
#include <AK/WeakPtr.h>
|
2020-08-06 09:17:53 +00:00
|
|
|
#include <AK/Weakable.h>
|
2020-07-04 23:37:36 +00:00
|
|
|
#include <Kernel/API/Syscall.h>
|
2021-07-07 16:29:19 +00:00
|
|
|
#include <Kernel/AtomicEdgeAction.h>
|
Kernel: Introduce the new ProcFS design
The new ProcFS design consists of two main parts:
1. The representative ProcFS class, which is derived from the FS class.
The ProcFS and its inodes are much more lean - merely 3 classes to
represent the common type of inodes - regular files, symbolic links and
directories. They're backed by a ProcFSExposedComponent object, which
is responsible for the functional operation behind the scenes.
2. The backend of the ProcFS - the ProcFSComponentsRegistrar class
and all derived classes from the ProcFSExposedComponent class. These
together form the entire backend and handle all the functions you can
expect from the ProcFS.
The ProcFSExposedComponent derived classes split to 3 types in the
manner of lifetime in the kernel:
1. Persistent objects - this category includes all basic objects, like
the root folder, /proc/bus folder, main blob files in the root folders,
etc. These objects are persistent and cannot die ever.
2. Semi-persistent objects - this category includes all PID folders,
and subdirectories to the PID folders. It also includes exposed objects
like the unveil JSON'ed blob. These object are persistent as long as the
the responsible process they represent is still alive.
3. Dynamic objects - this category includes files in the subdirectories
of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially,
these objects are always created dynamically and when no longer in need
after being used, they're deallocated.
Nevertheless, the new allocated backend objects and inodes try to use
the same InodeIndex if possible - this might change only when a thread
dies and a new thread is born with a new thread stack, or when a file
descriptor is closed and a new one within the same file descriptor
number is opened. This is needed to actually be able to do something
useful with these objects.
The new design assures that many ProcFS instances can be used at once,
with one backend for usage for all instances.
2021-06-12 01:23:58 +00:00
|
|
|
#include <Kernel/FileSystem/FileDescription.h>
|
2020-02-16 01:01:42 +00:00
|
|
|
#include <Kernel/FileSystem/InodeMetadata.h>
|
2021-08-06 12:11:45 +00:00
|
|
|
#include <Kernel/FileSystem/UnveilNode.h>
|
2020-02-16 00:50:16 +00:00
|
|
|
#include <Kernel/Forward.h>
|
2020-12-22 06:21:58 +00:00
|
|
|
#include <Kernel/FutexQueue.h>
|
2021-07-18 07:10:27 +00:00
|
|
|
#include <Kernel/Locking/Mutex.h>
|
2021-07-18 13:00:48 +00:00
|
|
|
#include <Kernel/Locking/ProtectedValue.h>
|
2021-08-06 11:57:39 +00:00
|
|
|
#include <Kernel/Memory/AddressSpace.h>
|
2021-04-25 21:42:36 +00:00
|
|
|
#include <Kernel/PerformanceEventBuffer.h>
|
2020-08-15 19:13:19 +00:00
|
|
|
#include <Kernel/ProcessGroup.h>
|
2020-06-18 20:18:44 +00:00
|
|
|
#include <Kernel/StdLib.h>
|
2019-03-23 21:03:17 +00:00
|
|
|
#include <Kernel/Thread.h>
|
2019-05-28 09:53:16 +00:00
|
|
|
#include <Kernel/UnixTypes.h>
|
2021-04-16 19:53:43 +00:00
|
|
|
#include <LibC/elf.h>
|
2019-05-26 00:08:51 +00:00
|
|
|
#include <LibC/signal_numbers.h>
|
2018-10-16 09:01:38 +00:00
|
|
|
|
2020-02-16 00:27:42 +00:00
|
|
|
namespace Kernel {
|
|
|
|
|
2021-07-18 13:00:48 +00:00
|
|
|
ProtectedValue<String>& hostname();
|
2021-02-28 01:18:48 +00:00
|
|
|
Time kgettimeofday();
|
2019-03-13 12:13:23 +00:00
|
|
|
|
2020-06-18 20:18:44 +00:00
|
|
|
#define ENUMERATE_PLEDGE_PROMISES \
|
|
|
|
__ENUMERATE_PLEDGE_PROMISE(stdio) \
|
|
|
|
__ENUMERATE_PLEDGE_PROMISE(rpath) \
|
|
|
|
__ENUMERATE_PLEDGE_PROMISE(wpath) \
|
|
|
|
__ENUMERATE_PLEDGE_PROMISE(cpath) \
|
|
|
|
__ENUMERATE_PLEDGE_PROMISE(dpath) \
|
|
|
|
__ENUMERATE_PLEDGE_PROMISE(inet) \
|
|
|
|
__ENUMERATE_PLEDGE_PROMISE(id) \
|
|
|
|
__ENUMERATE_PLEDGE_PROMISE(proc) \
|
2021-01-11 21:30:57 +00:00
|
|
|
__ENUMERATE_PLEDGE_PROMISE(ptrace) \
|
2020-06-18 20:18:44 +00:00
|
|
|
__ENUMERATE_PLEDGE_PROMISE(exec) \
|
|
|
|
__ENUMERATE_PLEDGE_PROMISE(unix) \
|
2020-06-24 20:57:37 +00:00
|
|
|
__ENUMERATE_PLEDGE_PROMISE(recvfd) \
|
|
|
|
__ENUMERATE_PLEDGE_PROMISE(sendfd) \
|
2020-06-18 20:18:44 +00:00
|
|
|
__ENUMERATE_PLEDGE_PROMISE(fattr) \
|
|
|
|
__ENUMERATE_PLEDGE_PROMISE(tty) \
|
|
|
|
__ENUMERATE_PLEDGE_PROMISE(chown) \
|
|
|
|
__ENUMERATE_PLEDGE_PROMISE(chroot) \
|
|
|
|
__ENUMERATE_PLEDGE_PROMISE(thread) \
|
|
|
|
__ENUMERATE_PLEDGE_PROMISE(video) \
|
|
|
|
__ENUMERATE_PLEDGE_PROMISE(accept) \
|
|
|
|
__ENUMERATE_PLEDGE_PROMISE(settime) \
|
2020-05-26 10:49:35 +00:00
|
|
|
__ENUMERATE_PLEDGE_PROMISE(sigaction) \
|
2021-01-29 17:50:27 +00:00
|
|
|
__ENUMERATE_PLEDGE_PROMISE(setkeymap) \
|
2021-01-31 21:50:17 +00:00
|
|
|
__ENUMERATE_PLEDGE_PROMISE(prot_exec) \
|
2021-02-21 00:08:48 +00:00
|
|
|
__ENUMERATE_PLEDGE_PROMISE(map_fixed) \
|
2021-01-31 21:50:17 +00:00
|
|
|
__ENUMERATE_PLEDGE_PROMISE(getkeymap)
|
2020-01-11 19:48:43 +00:00
|
|
|
|
|
|
|
enum class Pledge : u32 {
|
|
|
|
#define __ENUMERATE_PLEDGE_PROMISE(x) x,
|
|
|
|
ENUMERATE_PLEDGE_PROMISES
|
|
|
|
#undef __ENUMERATE_PLEDGE_PROMISE
|
|
|
|
};
|
|
|
|
|
2020-01-21 18:28:29 +00:00
|
|
|
enum class VeilState {
|
Kernel: Add a basic implementation of unveil()
This syscall is a complement to pledge() and adds the same sort of
incremental relinquishing of capabilities for filesystem access.
The first call to unveil() will "drop a veil" on the process, and from
now on, only unveiled parts of the filesystem are visible to it.
Each call to unveil() specifies a path to either a directory or a file
along with permissions for that path. The permissions are a combination
of the following:
- r: Read access (like the "rpath" promise)
- w: Write access (like the "wpath" promise)
- x: Execute access
- c: Create/remove access (like the "cpath" promise)
Attempts to open a path that has not been unveiled with fail with
ENOENT. If the unveiled path lacks sufficient permissions, it will fail
with EACCES.
Like pledge(), subsequent calls to unveil() with the same path can only
remove permissions, not add them.
Once you call unveil(nullptr, nullptr), the veil is locked, and it's no
longer possible to unveil any more paths for the process, ever.
This concept comes from OpenBSD, and their implementation does various
things differently, I'm sure. This is just a first implementation for
SerenityOS, and we'll keep improving on it as we go. :^)
2020-01-20 21:12:04 +00:00
|
|
|
None,
|
2020-01-21 18:28:29 +00:00
|
|
|
Dropped,
|
|
|
|
Locked,
|
Kernel: Add a basic implementation of unveil()
This syscall is a complement to pledge() and adds the same sort of
incremental relinquishing of capabilities for filesystem access.
The first call to unveil() will "drop a veil" on the process, and from
now on, only unveiled parts of the filesystem are visible to it.
Each call to unveil() specifies a path to either a directory or a file
along with permissions for that path. The permissions are a combination
of the following:
- r: Read access (like the "rpath" promise)
- w: Write access (like the "wpath" promise)
- x: Execute access
- c: Create/remove access (like the "cpath" promise)
Attempts to open a path that has not been unveiled with fail with
ENOENT. If the unveiled path lacks sufficient permissions, it will fail
with EACCES.
Like pledge(), subsequent calls to unveil() with the same path can only
remove permissions, not add them.
Once you call unveil(nullptr, nullptr), the veil is locked, and it's no
longer possible to unveil any more paths for the process, ever.
This concept comes from OpenBSD, and their implementation does various
things differently, I'm sure. This is just a first implementation for
SerenityOS, and we'll keep improving on it as we go. :^)
2020-01-20 21:12:04 +00:00
|
|
|
};
|
|
|
|
|
2020-12-22 06:21:58 +00:00
|
|
|
typedef HashMap<FlatPtr, RefPtr<FutexQueue>> FutexQueues;
|
|
|
|
|
2021-02-08 14:45:40 +00:00
|
|
|
struct LoadResult;
|
|
|
|
|
2021-03-11 12:13:05 +00:00
|
|
|
class ProtectedProcessBase {
|
|
|
|
protected:
|
|
|
|
ProcessID m_pid { 0 };
|
|
|
|
ProcessID m_ppid { 0 };
|
|
|
|
SessionID m_sid { 0 };
|
|
|
|
uid_t m_euid { 0 };
|
|
|
|
gid_t m_egid { 0 };
|
|
|
|
uid_t m_uid { 0 };
|
|
|
|
gid_t m_gid { 0 };
|
|
|
|
uid_t m_suid { 0 };
|
|
|
|
gid_t m_sgid { 0 };
|
|
|
|
Vector<gid_t> m_extra_gids;
|
|
|
|
bool m_dumpable { false };
|
2021-08-06 12:12:33 +00:00
|
|
|
Atomic<bool> m_has_promises { false };
|
|
|
|
Atomic<u32> m_promises { 0 };
|
|
|
|
Atomic<bool> m_has_execpromises { false };
|
|
|
|
Atomic<u32> m_execpromises { 0 };
|
2021-03-11 12:23:23 +00:00
|
|
|
mode_t m_umask { 022 };
|
2021-03-11 12:28:50 +00:00
|
|
|
VirtualAddress m_signal_trampoline;
|
2021-03-11 13:12:55 +00:00
|
|
|
Atomic<u32> m_thread_count { 0 };
|
2021-03-11 13:24:08 +00:00
|
|
|
u8 m_termination_status { 0 };
|
|
|
|
u8 m_termination_signal { 0 };
|
2021-03-11 12:13:05 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
class ProcessBase : public ProtectedProcessBase {
|
|
|
|
protected:
|
2021-06-26 02:09:25 +00:00
|
|
|
// Without the alignas specifier here the compiler places this class into
|
|
|
|
// the parent class' padding which then causes the members for the RefCounted
|
|
|
|
// class to be placed within the first page of the Process class.
|
|
|
|
alignas(ProtectedProcessBase) u8 m_process_base_padding[PAGE_SIZE - sizeof(ProtectedProcessBase)];
|
2021-03-11 12:13:05 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static_assert(sizeof(ProcessBase) == PAGE_SIZE);
|
|
|
|
|
2020-08-06 09:17:53 +00:00
|
|
|
class Process
|
2021-03-11 12:13:05 +00:00
|
|
|
: public ProcessBase
|
|
|
|
, public RefCounted<Process>
|
2020-08-06 09:17:53 +00:00
|
|
|
, public Weakable<Process> {
|
|
|
|
|
2020-04-22 09:54:58 +00:00
|
|
|
AK_MAKE_NONCOPYABLE(Process);
|
|
|
|
AK_MAKE_NONMOVABLE(Process);
|
|
|
|
|
2021-03-11 12:13:05 +00:00
|
|
|
MAKE_ALIGNED_ALLOCATED(Process, PAGE_SIZE);
|
|
|
|
|
2019-03-23 21:03:17 +00:00
|
|
|
friend class Thread;
|
2020-11-06 08:09:51 +00:00
|
|
|
friend class CoreDump;
|
Kernel: Introduce the new ProcFS design
The new ProcFS design consists of two main parts:
1. The representative ProcFS class, which is derived from the FS class.
The ProcFS and its inodes are much more lean - merely 3 classes to
represent the common type of inodes - regular files, symbolic links and
directories. They're backed by a ProcFSExposedComponent object, which
is responsible for the functional operation behind the scenes.
2. The backend of the ProcFS - the ProcFSComponentsRegistrar class
and all derived classes from the ProcFSExposedComponent class. These
together form the entire backend and handle all the functions you can
expect from the ProcFS.
The ProcFSExposedComponent derived classes split to 3 types in the
manner of lifetime in the kernel:
1. Persistent objects - this category includes all basic objects, like
the root folder, /proc/bus folder, main blob files in the root folders,
etc. These objects are persistent and cannot die ever.
2. Semi-persistent objects - this category includes all PID folders,
and subdirectories to the PID folders. It also includes exposed objects
like the unveil JSON'ed blob. These object are persistent as long as the
the responsible process they represent is still alive.
3. Dynamic objects - this category includes files in the subdirectories
of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially,
these objects are always created dynamically and when no longer in need
after being used, they're deallocated.
Nevertheless, the new allocated backend objects and inodes try to use
the same InodeIndex if possible - this might change only when a thread
dies and a new thread is born with a new thread stack, or when a file
descriptor is closed and a new one within the same file descriptor
number is opened. This is needed to actually be able to do something
useful with these objects.
The new design assures that many ProcFS instances can be used at once,
with one backend for usage for all instances.
2021-06-12 01:23:58 +00:00
|
|
|
friend class ProcFSProcessFileDescriptions;
|
2019-05-28 09:53:16 +00:00
|
|
|
|
2021-03-10 18:59:46 +00:00
|
|
|
// Helper class to temporarily unprotect a process's protected data so you can write to it.
|
2021-03-11 12:13:05 +00:00
|
|
|
class ProtectedDataMutationScope {
|
2021-03-10 18:59:46 +00:00
|
|
|
public:
|
2021-03-11 12:13:05 +00:00
|
|
|
explicit ProtectedDataMutationScope(Process& process)
|
2021-03-10 18:59:46 +00:00
|
|
|
: m_process(process)
|
|
|
|
{
|
|
|
|
m_process.unprotect_data();
|
|
|
|
}
|
|
|
|
|
2021-03-11 12:13:05 +00:00
|
|
|
~ProtectedDataMutationScope() { m_process.protect_data(); }
|
2021-03-10 18:59:46 +00:00
|
|
|
|
|
|
|
private:
|
|
|
|
Process& m_process;
|
|
|
|
};
|
|
|
|
|
2021-07-13 23:15:24 +00:00
|
|
|
enum class State : u8 {
|
|
|
|
Running = 0,
|
|
|
|
Dying,
|
|
|
|
Dead
|
|
|
|
};
|
|
|
|
|
2018-10-16 09:01:38 +00:00
|
|
|
public:
|
2020-06-28 21:34:31 +00:00
|
|
|
inline static Process* current()
|
|
|
|
{
|
2021-01-26 21:16:07 +00:00
|
|
|
auto current_thread = Processor::current_thread();
|
2020-06-28 21:34:31 +00:00
|
|
|
return current_thread ? ¤t_thread->process() : nullptr;
|
|
|
|
}
|
2020-02-17 14:04:27 +00:00
|
|
|
|
2021-05-23 19:45:58 +00:00
|
|
|
template<typename EntryFunction>
|
|
|
|
static void kernel_process_trampoline(void* data)
|
|
|
|
{
|
|
|
|
EntryFunction* func = reinterpret_cast<EntryFunction*>(data);
|
|
|
|
(*func)();
|
|
|
|
delete func;
|
|
|
|
}
|
|
|
|
|
2021-07-09 01:37:36 +00:00
|
|
|
enum class RegisterProcess {
|
|
|
|
No,
|
|
|
|
Yes
|
|
|
|
};
|
|
|
|
|
2020-11-17 03:51:34 +00:00
|
|
|
template<typename EntryFunction>
|
2021-07-09 01:37:36 +00:00
|
|
|
static RefPtr<Process> create_kernel_process(RefPtr<Thread>& first_thread, String&& name, EntryFunction entry, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes)
|
2020-11-17 03:51:34 +00:00
|
|
|
{
|
|
|
|
auto* entry_func = new EntryFunction(move(entry));
|
2021-07-09 01:37:36 +00:00
|
|
|
return create_kernel_process(first_thread, move(name), &Process::kernel_process_trampoline<EntryFunction>, entry_func, affinity, do_register);
|
2020-11-17 03:51:34 +00:00
|
|
|
}
|
|
|
|
|
2021-07-09 01:37:36 +00:00
|
|
|
static RefPtr<Process> create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data = nullptr, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes);
|
2020-09-27 14:53:35 +00:00
|
|
|
static RefPtr<Process> create_user_process(RefPtr<Thread>& first_thread, const String& path, uid_t, gid_t, ProcessID ppid, int& error, Vector<String>&& arguments = Vector<String>(), Vector<String>&& environment = Vector<String>(), TTY* = nullptr);
|
Kernel: Introduce the new ProcFS design
The new ProcFS design consists of two main parts:
1. The representative ProcFS class, which is derived from the FS class.
The ProcFS and its inodes are much more lean - merely 3 classes to
represent the common type of inodes - regular files, symbolic links and
directories. They're backed by a ProcFSExposedComponent object, which
is responsible for the functional operation behind the scenes.
2. The backend of the ProcFS - the ProcFSComponentsRegistrar class
and all derived classes from the ProcFSExposedComponent class. These
together form the entire backend and handle all the functions you can
expect from the ProcFS.
The ProcFSExposedComponent derived classes split to 3 types in the
manner of lifetime in the kernel:
1. Persistent objects - this category includes all basic objects, like
the root folder, /proc/bus folder, main blob files in the root folders,
etc. These objects are persistent and cannot die ever.
2. Semi-persistent objects - this category includes all PID folders,
and subdirectories to the PID folders. It also includes exposed objects
like the unveil JSON'ed blob. These object are persistent as long as the
the responsible process they represent is still alive.
3. Dynamic objects - this category includes files in the subdirectories
of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially,
these objects are always created dynamically and when no longer in need
after being used, they're deallocated.
Nevertheless, the new allocated backend objects and inodes try to use
the same InodeIndex if possible - this might change only when a thread
dies and a new thread is born with a new thread stack, or when a file
descriptor is closed and a new one within the same file descriptor
number is opened. This is needed to actually be able to do something
useful with these objects.
The new design assures that many ProcFS instances can be used at once,
with one backend for usage for all instances.
2021-06-12 01:23:58 +00:00
|
|
|
static void register_new(Process&);
|
2018-11-01 12:15:46 +00:00
|
|
|
~Process();
|
2018-10-23 10:44:46 +00:00
|
|
|
|
2021-02-25 20:10:47 +00:00
|
|
|
static NonnullRefPtrVector<Process> all_processes();
|
2018-10-16 09:01:38 +00:00
|
|
|
|
2021-08-05 20:22:26 +00:00
|
|
|
RefPtr<Thread> create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, OwnPtr<KString> name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true);
|
2020-06-28 21:34:31 +00:00
|
|
|
|
2019-12-11 19:36:56 +00:00
|
|
|
bool is_profiling() const { return m_profiling; }
|
|
|
|
void set_profiling(bool profiling) { m_profiling = profiling; }
|
2020-11-06 08:09:51 +00:00
|
|
|
bool should_core_dump() const { return m_should_dump_core; }
|
|
|
|
void set_dump_core(bool dump_core) { m_should_dump_core = dump_core; }
|
2019-12-11 19:36:56 +00:00
|
|
|
|
2021-07-13 23:15:24 +00:00
|
|
|
bool is_dying() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) != State::Running; }
|
|
|
|
bool is_dead() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) == State::Dead; }
|
2019-03-23 21:03:17 +00:00
|
|
|
|
2021-01-03 23:58:50 +00:00
|
|
|
bool is_stopped() const { return m_is_stopped; }
|
|
|
|
bool set_stopped(bool stopped) { return m_is_stopped.exchange(stopped); }
|
2020-12-09 04:18:45 +00:00
|
|
|
|
2020-09-10 15:46:24 +00:00
|
|
|
bool is_kernel_process() const { return m_is_kernel_process; }
|
|
|
|
bool is_user_process() const { return !m_is_kernel_process; }
|
2018-11-07 20:19:47 +00:00
|
|
|
|
2020-08-08 15:32:34 +00:00
|
|
|
static RefPtr<Process> from_pid(ProcessID);
|
2020-08-08 20:04:20 +00:00
|
|
|
static SessionID get_sid_from_pgid(ProcessGroupID pgid);
|
2018-10-16 09:01:38 +00:00
|
|
|
|
|
|
|
const String& name() const { return m_name; }
|
2021-03-11 12:13:05 +00:00
|
|
|
ProcessID pid() const { return m_pid; }
|
|
|
|
SessionID sid() const { return m_sid; }
|
|
|
|
bool is_session_leader() const { return m_sid.value() == m_pid.value(); }
|
2020-08-15 19:13:19 +00:00
|
|
|
ProcessGroupID pgid() const { return m_pg ? m_pg->pgid() : 0; }
|
2021-03-11 12:13:05 +00:00
|
|
|
bool is_group_leader() const { return pgid().value() == m_pid.value(); }
|
|
|
|
const Vector<gid_t>& extra_gids() const { return m_extra_gids; }
|
|
|
|
uid_t euid() const { return m_euid; }
|
|
|
|
gid_t egid() const { return m_egid; }
|
|
|
|
uid_t uid() const { return m_uid; }
|
|
|
|
gid_t gid() const { return m_gid; }
|
|
|
|
uid_t suid() const { return m_suid; }
|
|
|
|
gid_t sgid() const { return m_sgid; }
|
|
|
|
ProcessID ppid() const { return m_ppid; }
|
|
|
|
|
|
|
|
bool is_dumpable() const { return m_dumpable; }
|
2021-03-10 21:42:07 +00:00
|
|
|
void set_dumpable(bool);
|
2020-12-25 17:27:42 +00:00
|
|
|
|
2019-02-22 01:39:13 +00:00
|
|
|
mode_t umask() const { return m_umask; }
|
|
|
|
|
2019-02-27 11:32:53 +00:00
|
|
|
bool in_group(gid_t) const;
|
|
|
|
|
2021-05-16 09:36:52 +00:00
|
|
|
// Breakable iteration functions
|
|
|
|
template<IteratorFunction<Process&> Callback>
|
2019-05-28 09:53:16 +00:00
|
|
|
static void for_each(Callback);
|
2021-05-16 09:36:52 +00:00
|
|
|
template<IteratorFunction<Process&> Callback>
|
2020-08-08 20:04:20 +00:00
|
|
|
static void for_each_in_pgrp(ProcessGroupID, Callback);
|
2021-05-16 09:36:52 +00:00
|
|
|
template<IteratorFunction<Process&> Callback>
|
2019-05-28 09:53:16 +00:00
|
|
|
void for_each_child(Callback);
|
2021-03-11 13:12:55 +00:00
|
|
|
|
2021-05-16 09:36:52 +00:00
|
|
|
template<IteratorFunction<Thread&> Callback>
|
2021-03-11 13:12:55 +00:00
|
|
|
IterationDecision for_each_thread(Callback);
|
2021-05-16 09:36:52 +00:00
|
|
|
template<IteratorFunction<Thread&> Callback>
|
|
|
|
IterationDecision for_each_thread(Callback callback) const;
|
|
|
|
|
|
|
|
// Non-breakable iteration functions
|
|
|
|
template<VoidFunction<Process&> Callback>
|
|
|
|
static void for_each(Callback);
|
|
|
|
template<VoidFunction<Process&> Callback>
|
|
|
|
static void for_each_in_pgrp(ProcessGroupID, Callback);
|
|
|
|
template<VoidFunction<Process&> Callback>
|
|
|
|
void for_each_child(Callback);
|
|
|
|
|
|
|
|
template<VoidFunction<Thread&> Callback>
|
|
|
|
IterationDecision for_each_thread(Callback);
|
|
|
|
template<VoidFunction<Thread&> Callback>
|
2021-03-11 13:12:55 +00:00
|
|
|
IterationDecision for_each_thread(Callback callback) const;
|
2018-11-02 13:06:48 +00:00
|
|
|
|
2019-01-30 17:26:19 +00:00
|
|
|
void die();
|
2020-12-09 04:18:45 +00:00
|
|
|
void finalize();
|
2018-10-16 09:01:38 +00:00
|
|
|
|
2020-12-09 04:18:45 +00:00
|
|
|
ThreadTracer* tracer() { return m_tracer.ptr(); }
|
|
|
|
bool is_traced() const { return !!m_tracer; }
|
2021-05-13 04:44:07 +00:00
|
|
|
KResult start_tracing_from(ProcessID tracer);
|
2020-12-09 04:18:45 +00:00
|
|
|
void stop_tracing();
|
|
|
|
void tracer_trap(Thread&, const RegisterState&);
|
|
|
|
|
2021-06-28 18:59:35 +00:00
|
|
|
KResultOr<FlatPtr> sys$emuctl();
|
|
|
|
KResultOr<FlatPtr> sys$yield();
|
|
|
|
KResultOr<FlatPtr> sys$sync();
|
|
|
|
KResultOr<FlatPtr> sys$beep();
|
|
|
|
KResultOr<FlatPtr> sys$get_process_name(Userspace<char*> buffer, size_t buffer_size);
|
|
|
|
KResultOr<FlatPtr> sys$set_process_name(Userspace<const char*> user_name, size_t user_name_length);
|
|
|
|
KResultOr<FlatPtr> sys$create_inode_watcher(u32 flags);
|
|
|
|
KResultOr<FlatPtr> sys$inode_watcher_add_watch(Userspace<const Syscall::SC_inode_watcher_add_watch_params*> user_params);
|
|
|
|
KResultOr<FlatPtr> sys$inode_watcher_remove_watch(int fd, int wd);
|
|
|
|
KResultOr<FlatPtr> sys$dbgputch(u8);
|
|
|
|
KResultOr<FlatPtr> sys$dbgputstr(Userspace<const u8*>, size_t);
|
|
|
|
KResultOr<FlatPtr> sys$dump_backtrace();
|
|
|
|
KResultOr<FlatPtr> sys$gettid();
|
|
|
|
KResultOr<FlatPtr> sys$setsid();
|
|
|
|
KResultOr<FlatPtr> sys$getsid(pid_t);
|
|
|
|
KResultOr<FlatPtr> sys$setpgid(pid_t pid, pid_t pgid);
|
|
|
|
KResultOr<FlatPtr> sys$getpgrp();
|
|
|
|
KResultOr<FlatPtr> sys$getpgid(pid_t);
|
|
|
|
KResultOr<FlatPtr> sys$getuid();
|
|
|
|
KResultOr<FlatPtr> sys$getgid();
|
|
|
|
KResultOr<FlatPtr> sys$geteuid();
|
|
|
|
KResultOr<FlatPtr> sys$getegid();
|
|
|
|
KResultOr<FlatPtr> sys$getpid();
|
|
|
|
KResultOr<FlatPtr> sys$getppid();
|
|
|
|
KResultOr<FlatPtr> sys$getresuid(Userspace<uid_t*>, Userspace<uid_t*>, Userspace<uid_t*>);
|
|
|
|
KResultOr<FlatPtr> sys$getresgid(Userspace<gid_t*>, Userspace<gid_t*>, Userspace<gid_t*>);
|
|
|
|
KResultOr<FlatPtr> sys$umask(mode_t);
|
|
|
|
KResultOr<FlatPtr> sys$open(Userspace<const Syscall::SC_open_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$close(int fd);
|
|
|
|
KResultOr<FlatPtr> sys$read(int fd, Userspace<u8*>, size_t);
|
|
|
|
KResultOr<FlatPtr> sys$readv(int fd, Userspace<const struct iovec*> iov, int iov_count);
|
|
|
|
KResultOr<FlatPtr> sys$write(int fd, Userspace<const u8*>, size_t);
|
|
|
|
KResultOr<FlatPtr> sys$writev(int fd, Userspace<const struct iovec*> iov, int iov_count);
|
|
|
|
KResultOr<FlatPtr> sys$fstat(int fd, Userspace<stat*>);
|
|
|
|
KResultOr<FlatPtr> sys$stat(Userspace<const Syscall::SC_stat_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$lseek(int fd, Userspace<off_t*>, int whence);
|
|
|
|
KResultOr<FlatPtr> sys$ftruncate(int fd, Userspace<off_t*>);
|
|
|
|
KResultOr<FlatPtr> sys$kill(pid_t pid_or_pgid, int sig);
|
2019-02-15 11:30:48 +00:00
|
|
|
[[noreturn]] void sys$exit(int status);
|
2021-06-28 18:59:35 +00:00
|
|
|
KResultOr<FlatPtr> sys$sigreturn(RegisterState& registers);
|
|
|
|
KResultOr<FlatPtr> sys$waitid(Userspace<const Syscall::SC_waitid_params*>);
|
2021-03-01 12:49:16 +00:00
|
|
|
KResultOr<FlatPtr> sys$mmap(Userspace<const Syscall::SC_mmap_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$mremap(Userspace<const Syscall::SC_mremap_params*>);
|
2021-06-28 18:59:35 +00:00
|
|
|
KResultOr<FlatPtr> sys$munmap(Userspace<void*>, size_t);
|
|
|
|
KResultOr<FlatPtr> sys$set_mmap_name(Userspace<const Syscall::SC_set_mmap_name_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$mprotect(Userspace<void*>, size_t, int prot);
|
|
|
|
KResultOr<FlatPtr> sys$madvise(Userspace<void*>, size_t, int advice);
|
|
|
|
KResultOr<FlatPtr> sys$msyscall(Userspace<void*>);
|
|
|
|
KResultOr<FlatPtr> sys$purge(int mode);
|
|
|
|
KResultOr<FlatPtr> sys$select(Userspace<const Syscall::SC_select_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$poll(Userspace<const Syscall::SC_poll_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$get_dir_entries(int fd, Userspace<void*>, size_t);
|
|
|
|
KResultOr<FlatPtr> sys$getcwd(Userspace<char*>, size_t);
|
|
|
|
KResultOr<FlatPtr> sys$chdir(Userspace<const char*>, size_t);
|
|
|
|
KResultOr<FlatPtr> sys$fchdir(int fd);
|
|
|
|
KResultOr<FlatPtr> sys$adjtime(Userspace<const timeval*>, Userspace<timeval*>);
|
|
|
|
KResultOr<FlatPtr> sys$gettimeofday(Userspace<timeval*>);
|
|
|
|
KResultOr<FlatPtr> sys$clock_gettime(clockid_t, Userspace<timespec*>);
|
|
|
|
KResultOr<FlatPtr> sys$clock_settime(clockid_t, Userspace<const timespec*>);
|
|
|
|
KResultOr<FlatPtr> sys$clock_nanosleep(Userspace<const Syscall::SC_clock_nanosleep_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$gethostname(Userspace<char*>, size_t);
|
|
|
|
KResultOr<FlatPtr> sys$sethostname(Userspace<const char*>, size_t);
|
|
|
|
KResultOr<FlatPtr> sys$uname(Userspace<utsname*>);
|
|
|
|
KResultOr<FlatPtr> sys$readlink(Userspace<const Syscall::SC_readlink_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$ttyname(int fd, Userspace<char*>, size_t);
|
|
|
|
KResultOr<FlatPtr> sys$ptsname(int fd, Userspace<char*>, size_t);
|
|
|
|
KResultOr<FlatPtr> sys$fork(RegisterState&);
|
|
|
|
KResultOr<FlatPtr> sys$execve(Userspace<const Syscall::SC_execve_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$dup2(int old_fd, int new_fd);
|
|
|
|
KResultOr<FlatPtr> sys$sigaction(int signum, Userspace<const sigaction*> act, Userspace<sigaction*> old_act);
|
|
|
|
KResultOr<FlatPtr> sys$sigprocmask(int how, Userspace<const sigset_t*> set, Userspace<sigset_t*> old_set);
|
|
|
|
KResultOr<FlatPtr> sys$sigpending(Userspace<sigset_t*>);
|
|
|
|
KResultOr<FlatPtr> sys$getgroups(size_t, Userspace<gid_t*>);
|
|
|
|
KResultOr<FlatPtr> sys$setgroups(size_t, Userspace<const gid_t*>);
|
|
|
|
KResultOr<FlatPtr> sys$pipe(int pipefd[2], int flags);
|
|
|
|
KResultOr<FlatPtr> sys$killpg(pid_t pgrp, int sig);
|
|
|
|
KResultOr<FlatPtr> sys$seteuid(uid_t);
|
|
|
|
KResultOr<FlatPtr> sys$setegid(gid_t);
|
|
|
|
KResultOr<FlatPtr> sys$setuid(uid_t);
|
|
|
|
KResultOr<FlatPtr> sys$setgid(gid_t);
|
|
|
|
KResultOr<FlatPtr> sys$setreuid(uid_t, uid_t);
|
|
|
|
KResultOr<FlatPtr> sys$setresuid(uid_t, uid_t, uid_t);
|
|
|
|
KResultOr<FlatPtr> sys$setresgid(gid_t, gid_t, gid_t);
|
|
|
|
KResultOr<FlatPtr> sys$alarm(unsigned seconds);
|
|
|
|
KResultOr<FlatPtr> sys$access(Userspace<const char*> pathname, size_t path_length, int mode);
|
|
|
|
KResultOr<FlatPtr> sys$fcntl(int fd, int cmd, u32 extra_arg);
|
|
|
|
KResultOr<FlatPtr> sys$ioctl(int fd, unsigned request, FlatPtr arg);
|
|
|
|
KResultOr<FlatPtr> sys$mkdir(Userspace<const char*> pathname, size_t path_length, mode_t mode);
|
|
|
|
KResultOr<FlatPtr> sys$times(Userspace<tms*>);
|
|
|
|
KResultOr<FlatPtr> sys$utime(Userspace<const char*> pathname, size_t path_length, Userspace<const struct utimbuf*>);
|
|
|
|
KResultOr<FlatPtr> sys$link(Userspace<const Syscall::SC_link_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$unlink(Userspace<const char*> pathname, size_t path_length);
|
|
|
|
KResultOr<FlatPtr> sys$symlink(Userspace<const Syscall::SC_symlink_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$rmdir(Userspace<const char*> pathname, size_t path_length);
|
|
|
|
KResultOr<FlatPtr> sys$mount(Userspace<const Syscall::SC_mount_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$umount(Userspace<const char*> mountpoint, size_t mountpoint_length);
|
|
|
|
KResultOr<FlatPtr> sys$chmod(Userspace<const char*> pathname, size_t path_length, mode_t);
|
|
|
|
KResultOr<FlatPtr> sys$fchmod(int fd, mode_t);
|
|
|
|
KResultOr<FlatPtr> sys$chown(Userspace<const Syscall::SC_chown_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$fchown(int fd, uid_t, gid_t);
|
|
|
|
KResultOr<FlatPtr> sys$socket(int domain, int type, int protocol);
|
|
|
|
KResultOr<FlatPtr> sys$bind(int sockfd, Userspace<const sockaddr*> addr, socklen_t);
|
|
|
|
KResultOr<FlatPtr> sys$listen(int sockfd, int backlog);
|
|
|
|
KResultOr<FlatPtr> sys$accept4(Userspace<const Syscall::SC_accept4_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$connect(int sockfd, Userspace<const sockaddr*>, socklen_t);
|
|
|
|
KResultOr<FlatPtr> sys$shutdown(int sockfd, int how);
|
|
|
|
KResultOr<FlatPtr> sys$sendmsg(int sockfd, Userspace<const struct msghdr*>, int flags);
|
|
|
|
KResultOr<FlatPtr> sys$recvmsg(int sockfd, Userspace<struct msghdr*>, int flags);
|
|
|
|
KResultOr<FlatPtr> sys$getsockopt(Userspace<const Syscall::SC_getsockopt_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$setsockopt(Userspace<const Syscall::SC_setsockopt_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$getsockname(Userspace<const Syscall::SC_getsockname_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$getpeername(Userspace<const Syscall::SC_getpeername_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$socketpair(Userspace<const Syscall::SC_socketpair_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$sched_setparam(pid_t pid, Userspace<const struct sched_param*>);
|
|
|
|
KResultOr<FlatPtr> sys$sched_getparam(pid_t pid, Userspace<struct sched_param*>);
|
|
|
|
KResultOr<FlatPtr> sys$create_thread(void* (*)(void*), Userspace<const Syscall::SC_create_thread_params*>);
|
2021-05-28 09:20:22 +00:00
|
|
|
[[noreturn]] void sys$exit_thread(Userspace<void*>, Userspace<void*>, size_t);
|
2021-06-28 18:59:35 +00:00
|
|
|
KResultOr<FlatPtr> sys$join_thread(pid_t tid, Userspace<void**> exit_value);
|
|
|
|
KResultOr<FlatPtr> sys$detach_thread(pid_t tid);
|
|
|
|
KResultOr<FlatPtr> sys$set_thread_name(pid_t tid, Userspace<const char*> buffer, size_t buffer_size);
|
|
|
|
KResultOr<FlatPtr> sys$get_thread_name(pid_t tid, Userspace<char*> buffer, size_t buffer_size);
|
2021-07-09 01:56:29 +00:00
|
|
|
KResultOr<FlatPtr> sys$kill_thread(pid_t tid, int signal);
|
2021-06-28 18:59:35 +00:00
|
|
|
KResultOr<FlatPtr> sys$rename(Userspace<const Syscall::SC_rename_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$mknod(Userspace<const Syscall::SC_mknod_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$halt();
|
|
|
|
KResultOr<FlatPtr> sys$reboot();
|
|
|
|
KResultOr<FlatPtr> sys$realpath(Userspace<const Syscall::SC_realpath_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$getrandom(Userspace<void*>, size_t, unsigned int);
|
|
|
|
KResultOr<FlatPtr> sys$getkeymap(Userspace<const Syscall::SC_getkeymap_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$setkeymap(Userspace<const Syscall::SC_setkeymap_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$module_load(Userspace<const char*> path, size_t path_length);
|
|
|
|
KResultOr<FlatPtr> sys$module_unload(Userspace<const char*> name, size_t name_length);
|
|
|
|
KResultOr<FlatPtr> sys$profiling_enable(pid_t, u64);
|
|
|
|
KResultOr<FlatPtr> sys$profiling_disable(pid_t);
|
|
|
|
KResultOr<FlatPtr> sys$profiling_free_buffer(pid_t);
|
|
|
|
KResultOr<FlatPtr> sys$futex(Userspace<const Syscall::SC_futex_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$chroot(Userspace<const char*> path, size_t path_length, int mount_flags);
|
|
|
|
KResultOr<FlatPtr> sys$pledge(Userspace<const Syscall::SC_pledge_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$unveil(Userspace<const Syscall::SC_unveil_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$perf_event(int type, FlatPtr arg1, FlatPtr arg2);
|
|
|
|
KResultOr<FlatPtr> sys$get_stack_bounds(Userspace<FlatPtr*> stack_base, Userspace<size_t*> stack_size);
|
|
|
|
KResultOr<FlatPtr> sys$ptrace(Userspace<const Syscall::SC_ptrace_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$sendfd(int sockfd, int fd);
|
|
|
|
KResultOr<FlatPtr> sys$recvfd(int sockfd, int options);
|
|
|
|
KResultOr<FlatPtr> sys$sysconf(int name);
|
|
|
|
KResultOr<FlatPtr> sys$disown(ProcessID);
|
2021-04-24 08:30:20 +00:00
|
|
|
KResultOr<FlatPtr> sys$allocate_tls(Userspace<const char*> initial_data, size_t);
|
2021-06-28 18:59:35 +00:00
|
|
|
KResultOr<FlatPtr> sys$prctl(int option, FlatPtr arg1, FlatPtr arg2);
|
|
|
|
KResultOr<FlatPtr> sys$set_coredump_metadata(Userspace<const Syscall::SC_set_coredump_metadata_params*>);
|
|
|
|
KResultOr<FlatPtr> sys$anon_create(size_t, int options);
|
|
|
|
KResultOr<FlatPtr> sys$statvfs(Userspace<const Syscall::SC_statvfs_params*> user_params);
|
|
|
|
KResultOr<FlatPtr> sys$fstatvfs(int fd, statvfs* buf);
|
2019-02-16 11:13:43 +00:00
|
|
|
|
2020-01-27 20:11:36 +00:00
|
|
|
template<bool sockname, typename Params>
|
|
|
|
int get_sock_or_peer_name(const Params&);
|
|
|
|
|
2018-10-16 09:01:38 +00:00
|
|
|
static void initialize();
|
|
|
|
|
2021-06-28 16:32:25 +00:00
|
|
|
[[noreturn]] void crash(int signal, FlatPtr ip, bool out_of_memory = false);
|
2020-11-29 23:05:27 +00:00
|
|
|
[[nodiscard]] siginfo_t wait_info();
|
2018-10-17 22:26:30 +00:00
|
|
|
|
2018-10-30 14:33:37 +00:00
|
|
|
const TTY* tty() const { return m_tty; }
|
2020-02-16 01:01:42 +00:00
|
|
|
void set_tty(TTY*);
|
2018-10-30 14:33:37 +00:00
|
|
|
|
2019-07-03 19:17:35 +00:00
|
|
|
u32 m_ticks_in_user { 0 };
|
|
|
|
u32 m_ticks_in_kernel { 0 };
|
2018-12-03 00:12:26 +00:00
|
|
|
|
2019-07-03 19:17:35 +00:00
|
|
|
u32 m_ticks_in_user_for_dead_children { 0 };
|
|
|
|
u32 m_ticks_in_kernel_for_dead_children { 0 };
|
2018-12-03 00:12:26 +00:00
|
|
|
|
2019-05-30 18:23:50 +00:00
|
|
|
Custody& current_directory();
|
2020-12-26 23:54:13 +00:00
|
|
|
Custody* executable() { return m_executable.ptr(); }
|
|
|
|
const Custody* executable() const { return m_executable.ptr(); }
|
2018-10-28 11:20:25 +00:00
|
|
|
|
2021-01-15 19:21:03 +00:00
|
|
|
const Vector<String>& arguments() const { return m_arguments; };
|
|
|
|
const Vector<String>& environment() const { return m_environment; };
|
|
|
|
|
2021-02-18 07:51:06 +00:00
|
|
|
KResult exec(String path, Vector<String> arguments, Vector<String> environment, int recusion_depth = 0);
|
2018-11-02 19:41:58 +00:00
|
|
|
|
2021-06-28 15:24:08 +00:00
|
|
|
KResultOr<LoadResult> load(NonnullRefPtr<FileDescription> main_program_description, RefPtr<FileDescription> interpreter_description, const ElfW(Ehdr) & main_program_header);
|
2020-10-10 09:13:21 +00:00
|
|
|
|
2021-03-10 18:59:46 +00:00
|
|
|
bool is_superuser() const { return euid() == 0; }
|
2018-11-07 00:38:51 +00:00
|
|
|
|
2019-07-03 19:17:35 +00:00
|
|
|
void terminate_due_to_signal(u8 signal);
|
2020-05-16 10:33:48 +00:00
|
|
|
KResult send_signal(u8 signal, Process* sender);
|
2019-03-23 21:03:17 +00:00
|
|
|
|
2021-01-03 20:46:38 +00:00
|
|
|
u8 termination_signal() const { return m_termination_signal; }
|
|
|
|
|
2020-07-30 21:38:15 +00:00
|
|
|
u16 thread_count() const
|
|
|
|
{
|
2020-11-29 23:05:27 +00:00
|
|
|
return m_thread_count.load(AK::MemoryOrder::memory_order_relaxed);
|
2020-07-30 21:38:15 +00:00
|
|
|
}
|
2019-12-22 10:35:02 +00:00
|
|
|
|
2021-07-17 19:09:51 +00:00
|
|
|
Mutex& big_lock() { return m_big_lock; }
|
|
|
|
Mutex& ptrace_lock() { return m_ptrace_lock; }
|
2019-04-01 18:02:05 +00:00
|
|
|
|
2020-01-10 22:14:04 +00:00
|
|
|
Custody& root_directory();
|
2020-01-12 18:42:01 +00:00
|
|
|
Custody& root_directory_relative_to_global_root();
|
2020-01-10 22:14:04 +00:00
|
|
|
void set_root_directory(const Custody&);
|
|
|
|
|
2021-03-11 12:13:05 +00:00
|
|
|
bool has_promises() const { return m_has_promises; }
|
|
|
|
bool has_promised(Pledge pledge) const { return m_promises & (1u << (u32)pledge); }
|
2020-01-11 19:48:43 +00:00
|
|
|
|
2020-07-30 21:38:15 +00:00
|
|
|
VeilState veil_state() const
|
|
|
|
{
|
|
|
|
return m_veil_state;
|
|
|
|
}
|
2020-12-26 10:24:34 +00:00
|
|
|
const UnveilNode& unveiled_paths() const
|
2020-07-30 21:38:15 +00:00
|
|
|
{
|
|
|
|
return m_unveiled_paths;
|
|
|
|
}
|
Kernel: Add a basic implementation of unveil()
This syscall is a complement to pledge() and adds the same sort of
incremental relinquishing of capabilities for filesystem access.
The first call to unveil() will "drop a veil" on the process, and from
now on, only unveiled parts of the filesystem are visible to it.
Each call to unveil() specifies a path to either a directory or a file
along with permissions for that path. The permissions are a combination
of the following:
- r: Read access (like the "rpath" promise)
- w: Write access (like the "wpath" promise)
- x: Execute access
- c: Create/remove access (like the "cpath" promise)
Attempts to open a path that has not been unveiled with fail with
ENOENT. If the unveiled path lacks sufficient permissions, it will fail
with EACCES.
Like pledge(), subsequent calls to unveil() with the same path can only
remove permissions, not add them.
Once you call unveil(nullptr, nullptr), the veil is locked, and it's no
longer possible to unveil any more paths for the process, ever.
This concept comes from OpenBSD, and their implementation does various
things differently, I'm sure. This is just a first implementation for
SerenityOS, and we'll keep improving on it as we go. :^)
2020-01-20 21:12:04 +00:00
|
|
|
|
2020-07-30 21:38:15 +00:00
|
|
|
bool wait_for_tracer_at_next_execve() const
|
|
|
|
{
|
|
|
|
return m_wait_for_tracer_at_next_execve;
|
|
|
|
}
|
|
|
|
void set_wait_for_tracer_at_next_execve(bool val)
|
|
|
|
{
|
|
|
|
m_wait_for_tracer_at_next_execve = val;
|
|
|
|
}
|
2020-04-07 15:23:37 +00:00
|
|
|
|
2020-08-01 22:25:19 +00:00
|
|
|
KResultOr<u32> peek_user_data(Userspace<const u32*> address);
|
|
|
|
KResult poke_user_data(Userspace<u32*> address, u32 data);
|
2020-04-07 15:23:37 +00:00
|
|
|
|
2020-12-09 02:04:05 +00:00
|
|
|
void disowned_by_waiter(Process& process);
|
2020-12-09 04:18:45 +00:00
|
|
|
void unblock_waiters(Thread::WaitBlocker::UnblockFlags, u8 signal = 0);
|
2020-11-29 23:05:27 +00:00
|
|
|
Thread::WaitBlockCondition& wait_block_condition() { return m_wait_block_condition; }
|
|
|
|
|
2021-08-05 21:43:10 +00:00
|
|
|
template<typename Callback>
|
|
|
|
void for_each_coredump_property(Callback callback) const
|
|
|
|
{
|
|
|
|
for (auto& property : m_coredump_properties) {
|
|
|
|
if (property.key && property.value)
|
|
|
|
callback(*property.key, *property.value);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
KResult set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value);
|
|
|
|
KResult try_set_coredump_property(StringView key, StringView value);
|
2020-12-30 14:19:57 +00:00
|
|
|
|
2021-01-28 07:41:18 +00:00
|
|
|
const NonnullRefPtrVector<Thread>& threads_for_coredump(Badge<CoreDump>) const { return m_threads_for_coredump; }
|
|
|
|
|
2021-01-11 08:52:18 +00:00
|
|
|
PerformanceEventBuffer* perf_events() { return m_perf_event_buffer; }
|
|
|
|
|
2021-08-06 11:59:22 +00:00
|
|
|
Memory::AddressSpace& address_space() { return *m_space; }
|
|
|
|
Memory::AddressSpace const& address_space() const { return *m_space; }
|
2021-02-02 18:56:11 +00:00
|
|
|
|
2021-02-13 23:53:53 +00:00
|
|
|
VirtualAddress signal_trampoline() const { return m_signal_trampoline; }
|
|
|
|
|
2018-10-16 09:01:38 +00:00
|
|
|
private:
|
2018-10-18 11:05:00 +00:00
|
|
|
friend class MemoryManager;
|
2018-11-07 21:15:02 +00:00
|
|
|
friend class Scheduler;
|
2018-11-08 13:35:30 +00:00
|
|
|
friend class Region;
|
2021-05-07 05:29:19 +00:00
|
|
|
friend class PerformanceManager;
|
2018-10-18 11:05:00 +00:00
|
|
|
|
2021-01-23 06:24:33 +00:00
|
|
|
bool add_thread(Thread&);
|
|
|
|
bool remove_thread(Thread&);
|
|
|
|
|
2021-05-14 11:55:43 +00:00
|
|
|
Process(const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty);
|
|
|
|
static RefPtr<Process> create(RefPtr<Thread>& first_thread, const String& name, uid_t, gid_t, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd = nullptr, RefPtr<Custody> executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr);
|
|
|
|
KResult attach_resources(RefPtr<Thread>& first_thread, Process* fork_parent);
|
2020-08-08 15:32:34 +00:00
|
|
|
static ProcessID allocate_pid();
|
2018-10-25 09:15:17 +00:00
|
|
|
|
Kernel: Allow process with multiple threads to call exec and exit
This allows a process wich has more than 1 thread to call exec, even
from a thread. This kills all the other threads, but it won't wait for
them to finish, just makes sure that they are not in a running/runable
state.
In the case where a thread does exec, the new program PID will be the
thread TID, to keep the PID == TID in the new process.
This introduces a new function inside the Process class,
kill_threads_except_self which is called on exit() too (exit with
multiple threads wasn't properly working either).
Inside the Lock class, there is the need for a new function,
clear_waiters, which removes all the waiters from the
Process::big_lock. This is needed since after a exit/exec, there should
be no other threads waiting for this lock, the threads should be simply
killed. Only queued threads should wait for this lock at this point,
since blocked threads are handled in set_should_die.
2020-02-18 12:28:28 +00:00
|
|
|
void kill_threads_except_self();
|
|
|
|
void kill_all_threads();
|
2021-01-11 17:53:45 +00:00
|
|
|
bool dump_core();
|
|
|
|
bool dump_perfcore();
|
2021-03-02 15:55:54 +00:00
|
|
|
bool create_perf_events_buffer_if_needed();
|
2021-04-19 04:10:05 +00:00
|
|
|
void delete_perf_events_buffer();
|
Kernel: Allow process with multiple threads to call exec and exit
This allows a process wich has more than 1 thread to call exec, even
from a thread. This kills all the other threads, but it won't wait for
them to finish, just makes sure that they are not in a running/runable
state.
In the case where a thread does exec, the new program PID will be the
thread TID, to keep the PID == TID in the new process.
This introduces a new function inside the Process class,
kill_threads_except_self which is called on exit() too (exit with
multiple threads wasn't properly working either).
Inside the Lock class, there is the need for a new function,
clear_waiters, which removes all the waiters from the
Process::big_lock. This is needed since after a exit/exec, there should
be no other threads waiting for this lock, the threads should be simply
killed. Only queued threads should wait for this lock at this point,
since blocked threads are handled in set_should_die.
2020-02-18 12:28:28 +00:00
|
|
|
|
2021-06-28 15:24:08 +00:00
|
|
|
KResult do_exec(NonnullRefPtr<FileDescription> main_program_description, Vector<String> arguments, Vector<String> environment, RefPtr<FileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags, const ElfW(Ehdr) & main_program_header);
|
2021-06-28 18:59:35 +00:00
|
|
|
KResultOr<FlatPtr> do_write(FileDescription&, const UserOrKernelBuffer&, size_t);
|
2018-10-16 09:01:38 +00:00
|
|
|
|
2021-06-28 18:59:35 +00:00
|
|
|
KResultOr<FlatPtr> do_statvfs(String path, statvfs* buf);
|
2021-05-19 09:31:43 +00:00
|
|
|
|
2021-06-28 15:24:08 +00:00
|
|
|
KResultOr<RefPtr<FileDescription>> find_elf_interpreter_for_executable(const String& path, const ElfW(Ehdr) & elf_header, int nread, size_t file_size);
|
Kernel: Tighten up exec/do_exec and allow for PT_INTERP iterpreters
This patch changes how exec() figures out which program image to
actually load. Previously, we opened the path to our main executable in
find_shebang_interpreter_for_executable, read the first page (or less,
if the file was smaller) and then decided whether to recurse with the
interpreter instead. We then then re-opened the main executable in
do_exec.
However, since we now want to parse the ELF header and Program Headers
of an elf image before even doing any memory region work, we can change
the way this whole process works. We open the file and read (up to) the
first page in exec() itself, then pass just the page and the amount read
to find_shebang_interpreter_for_executable. Since we now have that page
and the FileDescription for the main executable handy, we can do a few
things. First, validate the ELF header and ELF program headers for any
shenanigans. ELF32 Little Endian i386 only, please. Second, we can grab
the PT_INTERP interpreter from any ET_DYN files, and open that guy right
away if it exists. Finally, we can pass the main executable's and
optionally the PT_INTERP interpreter's file descriptions down to do_exec
and not have to feel guilty about opening the file twice.
In do_exec, we now have a choice. Are we going to load the main
executable, or the interpreter? We could load both, but it'll be way
easier for the inital pass on the RTLD if we only load the interpreter.
Then it can load the main executable itself like any old shared object,
just, the one with main in it :). Later on we can load both of them
into memory and the RTLD can relocate itself before trying to do
anything. The way it's written now the RTLD will get dibs on its
requested virtual addresses being the actual virtual addresses.
2020-01-11 01:28:02 +00:00
|
|
|
|
2019-11-14 16:16:30 +00:00
|
|
|
KResult do_kill(Process&, int signal);
|
2020-08-08 23:08:24 +00:00
|
|
|
KResult do_killpg(ProcessGroupID pgrp, int signal);
|
2020-04-26 00:45:23 +00:00
|
|
|
KResult do_killall(int signal);
|
|
|
|
KResult do_killself(int signal);
|
2019-11-14 16:16:30 +00:00
|
|
|
|
2020-02-05 16:42:43 +00:00
|
|
|
KResultOr<siginfo_t> do_waitid(idtype_t idtype, int id, int options);
|
|
|
|
|
2021-05-29 14:59:40 +00:00
|
|
|
KResultOr<NonnullOwnPtr<KString>> get_syscall_path_argument(const char* user_path, size_t path_length) const;
|
|
|
|
KResultOr<NonnullOwnPtr<KString>> get_syscall_path_argument(Userspace<const char*> user_path, size_t path_length) const
|
2020-07-31 14:28:37 +00:00
|
|
|
{
|
2020-07-31 16:46:55 +00:00
|
|
|
return get_syscall_path_argument(user_path.unsafe_userspace_ptr(), path_length);
|
2020-07-31 14:28:37 +00:00
|
|
|
}
|
2021-05-29 14:59:40 +00:00
|
|
|
KResultOr<NonnullOwnPtr<KString>> get_syscall_path_argument(const Syscall::StringArgument&) const;
|
2020-01-06 10:05:59 +00:00
|
|
|
|
2020-12-09 04:18:45 +00:00
|
|
|
bool has_tracee_thread(ProcessID tracer_pid);
|
2020-03-28 08:47:16 +00:00
|
|
|
|
2020-12-22 06:21:58 +00:00
|
|
|
void clear_futex_queues_on_exec();
|
|
|
|
|
2021-04-28 10:39:12 +00:00
|
|
|
void setup_socket_fd(int fd, NonnullRefPtr<FileDescription> description, int type);
|
|
|
|
|
2021-04-25 21:42:36 +00:00
|
|
|
inline PerformanceEventBuffer* current_perf_events_buffer()
|
|
|
|
{
|
2021-05-23 20:16:30 +00:00
|
|
|
if (g_profiling_all_threads)
|
|
|
|
return g_global_perf_events;
|
|
|
|
else if (m_profiling)
|
|
|
|
return m_perf_event_buffer.ptr();
|
|
|
|
else
|
|
|
|
return nullptr;
|
2021-04-25 21:42:36 +00:00
|
|
|
}
|
|
|
|
|
2021-07-24 16:43:29 +00:00
|
|
|
mutable IntrusiveListNode<Process> m_list_node;
|
2018-10-16 09:01:38 +00:00
|
|
|
|
|
|
|
String m_name;
|
2019-03-23 21:03:17 +00:00
|
|
|
|
2021-08-06 11:57:39 +00:00
|
|
|
OwnPtr<Memory::AddressSpace> m_space;
|
2021-02-08 14:45:40 +00:00
|
|
|
|
2020-08-15 19:13:19 +00:00
|
|
|
RefPtr<ProcessGroup> m_pg;
|
2019-03-23 21:03:17 +00:00
|
|
|
|
2021-07-07 16:29:19 +00:00
|
|
|
AtomicEdgeAction<u32> m_protected_data_refs;
|
2021-03-10 18:59:46 +00:00
|
|
|
void protect_data();
|
|
|
|
void unprotect_data();
|
2020-06-17 12:58:00 +00:00
|
|
|
|
2020-12-09 04:18:45 +00:00
|
|
|
OwnPtr<ThreadTracer> m_tracer;
|
|
|
|
|
Kernel: Introduce the new ProcFS design
The new ProcFS design consists of two main parts:
1. The representative ProcFS class, which is derived from the FS class.
The ProcFS and its inodes are much more lean - merely 3 classes to
represent the common type of inodes - regular files, symbolic links and
directories. They're backed by a ProcFSExposedComponent object, which
is responsible for the functional operation behind the scenes.
2. The backend of the ProcFS - the ProcFSComponentsRegistrar class
and all derived classes from the ProcFSExposedComponent class. These
together form the entire backend and handle all the functions you can
expect from the ProcFS.
The ProcFSExposedComponent derived classes split to 3 types in the
manner of lifetime in the kernel:
1. Persistent objects - this category includes all basic objects, like
the root folder, /proc/bus folder, main blob files in the root folders,
etc. These objects are persistent and cannot die ever.
2. Semi-persistent objects - this category includes all PID folders,
and subdirectories to the PID folders. It also includes exposed objects
like the unveil JSON'ed blob. These object are persistent as long as the
the responsible process they represent is still alive.
3. Dynamic objects - this category includes files in the subdirectories
of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially,
these objects are always created dynamically and when no longer in need
after being used, they're deallocated.
Nevertheless, the new allocated backend objects and inodes try to use
the same InodeIndex if possible - this might change only when a thread
dies and a new thread is born with a new thread stack, or when a file
descriptor is closed and a new one within the same file descriptor
number is opened. This is needed to actually be able to do something
useful with these objects.
The new design assures that many ProcFS instances can be used at once,
with one backend for usage for all instances.
2021-06-12 01:23:58 +00:00
|
|
|
public:
|
2020-07-30 21:50:31 +00:00
|
|
|
class FileDescriptionAndFlags {
|
|
|
|
public:
|
Kernel: Introduce the new ProcFS design
The new ProcFS design consists of two main parts:
1. The representative ProcFS class, which is derived from the FS class.
The ProcFS and its inodes are much more lean - merely 3 classes to
represent the common type of inodes - regular files, symbolic links and
directories. They're backed by a ProcFSExposedComponent object, which
is responsible for the functional operation behind the scenes.
2. The backend of the ProcFS - the ProcFSComponentsRegistrar class
and all derived classes from the ProcFSExposedComponent class. These
together form the entire backend and handle all the functions you can
expect from the ProcFS.
The ProcFSExposedComponent derived classes split to 3 types in the
manner of lifetime in the kernel:
1. Persistent objects - this category includes all basic objects, like
the root folder, /proc/bus folder, main blob files in the root folders,
etc. These objects are persistent and cannot die ever.
2. Semi-persistent objects - this category includes all PID folders,
and subdirectories to the PID folders. It also includes exposed objects
like the unveil JSON'ed blob. These object are persistent as long as the
the responsible process they represent is still alive.
3. Dynamic objects - this category includes files in the subdirectories
of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially,
these objects are always created dynamically and when no longer in need
after being used, they're deallocated.
Nevertheless, the new allocated backend objects and inodes try to use
the same InodeIndex if possible - this might change only when a thread
dies and a new thread is born with a new thread stack, or when a file
descriptor is closed and a new one within the same file descriptor
number is opened. This is needed to actually be able to do something
useful with these objects.
The new design assures that many ProcFS instances can be used at once,
with one backend for usage for all instances.
2021-06-12 01:23:58 +00:00
|
|
|
bool is_valid() const { return !m_description.is_null(); }
|
2021-07-28 06:59:24 +00:00
|
|
|
bool is_allocated() const { return m_is_allocated; }
|
|
|
|
void allocate()
|
|
|
|
{
|
|
|
|
VERIFY(!m_is_allocated);
|
|
|
|
VERIFY(!is_valid());
|
|
|
|
m_is_allocated = true;
|
|
|
|
}
|
|
|
|
void deallocate()
|
|
|
|
{
|
|
|
|
VERIFY(m_is_allocated);
|
|
|
|
VERIFY(!is_valid());
|
|
|
|
m_is_allocated = false;
|
|
|
|
}
|
Kernel: Introduce the new ProcFS design
The new ProcFS design consists of two main parts:
1. The representative ProcFS class, which is derived from the FS class.
The ProcFS and its inodes are much more lean - merely 3 classes to
represent the common type of inodes - regular files, symbolic links and
directories. They're backed by a ProcFSExposedComponent object, which
is responsible for the functional operation behind the scenes.
2. The backend of the ProcFS - the ProcFSComponentsRegistrar class
and all derived classes from the ProcFSExposedComponent class. These
together form the entire backend and handle all the functions you can
expect from the ProcFS.
The ProcFSExposedComponent derived classes split to 3 types in the
manner of lifetime in the kernel:
1. Persistent objects - this category includes all basic objects, like
the root folder, /proc/bus folder, main blob files in the root folders,
etc. These objects are persistent and cannot die ever.
2. Semi-persistent objects - this category includes all PID folders,
and subdirectories to the PID folders. It also includes exposed objects
like the unveil JSON'ed blob. These object are persistent as long as the
the responsible process they represent is still alive.
3. Dynamic objects - this category includes files in the subdirectories
of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially,
these objects are always created dynamically and when no longer in need
after being used, they're deallocated.
Nevertheless, the new allocated backend objects and inodes try to use
the same InodeIndex if possible - this might change only when a thread
dies and a new thread is born with a new thread stack, or when a file
descriptor is closed and a new one within the same file descriptor
number is opened. This is needed to actually be able to do something
useful with these objects.
The new design assures that many ProcFS instances can be used at once,
with one backend for usage for all instances.
2021-06-12 01:23:58 +00:00
|
|
|
|
2020-07-30 21:50:31 +00:00
|
|
|
FileDescription* description() { return m_description; }
|
|
|
|
const FileDescription* description() const { return m_description; }
|
Kernel: Introduce the new ProcFS design
The new ProcFS design consists of two main parts:
1. The representative ProcFS class, which is derived from the FS class.
The ProcFS and its inodes are much more lean - merely 3 classes to
represent the common type of inodes - regular files, symbolic links and
directories. They're backed by a ProcFSExposedComponent object, which
is responsible for the functional operation behind the scenes.
2. The backend of the ProcFS - the ProcFSComponentsRegistrar class
and all derived classes from the ProcFSExposedComponent class. These
together form the entire backend and handle all the functions you can
expect from the ProcFS.
The ProcFSExposedComponent derived classes split to 3 types in the
manner of lifetime in the kernel:
1. Persistent objects - this category includes all basic objects, like
the root folder, /proc/bus folder, main blob files in the root folders,
etc. These objects are persistent and cannot die ever.
2. Semi-persistent objects - this category includes all PID folders,
and subdirectories to the PID folders. It also includes exposed objects
like the unveil JSON'ed blob. These object are persistent as long as the
the responsible process they represent is still alive.
3. Dynamic objects - this category includes files in the subdirectories
of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially,
these objects are always created dynamically and when no longer in need
after being used, they're deallocated.
Nevertheless, the new allocated backend objects and inodes try to use
the same InodeIndex if possible - this might change only when a thread
dies and a new thread is born with a new thread stack, or when a file
descriptor is closed and a new one within the same file descriptor
number is opened. This is needed to actually be able to do something
useful with these objects.
The new design assures that many ProcFS instances can be used at once,
with one backend for usage for all instances.
2021-06-12 01:23:58 +00:00
|
|
|
InodeIndex global_procfs_inode_index() const { return m_global_procfs_inode_index; }
|
2020-07-30 21:50:31 +00:00
|
|
|
u32 flags() const { return m_flags; }
|
|
|
|
void set_flags(u32 flags) { m_flags = flags; }
|
|
|
|
|
2019-04-29 02:55:54 +00:00
|
|
|
void clear();
|
2020-07-30 21:50:31 +00:00
|
|
|
void set(NonnullRefPtr<FileDescription>&&, u32 flags = 0);
|
Kernel: Introduce the new ProcFS design
The new ProcFS design consists of two main parts:
1. The representative ProcFS class, which is derived from the FS class.
The ProcFS and its inodes are much more lean - merely 3 classes to
represent the common type of inodes - regular files, symbolic links and
directories. They're backed by a ProcFSExposedComponent object, which
is responsible for the functional operation behind the scenes.
2. The backend of the ProcFS - the ProcFSComponentsRegistrar class
and all derived classes from the ProcFSExposedComponent class. These
together form the entire backend and handle all the functions you can
expect from the ProcFS.
The ProcFSExposedComponent derived classes split to 3 types in the
manner of lifetime in the kernel:
1. Persistent objects - this category includes all basic objects, like
the root folder, /proc/bus folder, main blob files in the root folders,
etc. These objects are persistent and cannot die ever.
2. Semi-persistent objects - this category includes all PID folders,
and subdirectories to the PID folders. It also includes exposed objects
like the unveil JSON'ed blob. These object are persistent as long as the
the responsible process they represent is still alive.
3. Dynamic objects - this category includes files in the subdirectories
of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially,
these objects are always created dynamically and when no longer in need
after being used, they're deallocated.
Nevertheless, the new allocated backend objects and inodes try to use
the same InodeIndex if possible - this might change only when a thread
dies and a new thread is born with a new thread stack, or when a file
descriptor is closed and a new one within the same file descriptor
number is opened. This is needed to actually be able to do something
useful with these objects.
The new design assures that many ProcFS instances can be used at once,
with one backend for usage for all instances.
2021-06-12 01:23:58 +00:00
|
|
|
void refresh_inode_index();
|
2020-07-30 21:50:31 +00:00
|
|
|
|
|
|
|
private:
|
|
|
|
RefPtr<FileDescription> m_description;
|
2021-07-28 06:59:24 +00:00
|
|
|
bool m_is_allocated { false };
|
2020-07-30 21:50:31 +00:00
|
|
|
u32 m_flags { 0 };
|
Kernel: Introduce the new ProcFS design
The new ProcFS design consists of two main parts:
1. The representative ProcFS class, which is derived from the FS class.
The ProcFS and its inodes are much more lean - merely 3 classes to
represent the common type of inodes - regular files, symbolic links and
directories. They're backed by a ProcFSExposedComponent object, which
is responsible for the functional operation behind the scenes.
2. The backend of the ProcFS - the ProcFSComponentsRegistrar class
and all derived classes from the ProcFSExposedComponent class. These
together form the entire backend and handle all the functions you can
expect from the ProcFS.
The ProcFSExposedComponent derived classes split to 3 types in the
manner of lifetime in the kernel:
1. Persistent objects - this category includes all basic objects, like
the root folder, /proc/bus folder, main blob files in the root folders,
etc. These objects are persistent and cannot die ever.
2. Semi-persistent objects - this category includes all PID folders,
and subdirectories to the PID folders. It also includes exposed objects
like the unveil JSON'ed blob. These object are persistent as long as the
the responsible process they represent is still alive.
3. Dynamic objects - this category includes files in the subdirectories
of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially,
these objects are always created dynamically and when no longer in need
after being used, they're deallocated.
Nevertheless, the new allocated backend objects and inodes try to use
the same InodeIndex if possible - this might change only when a thread
dies and a new thread is born with a new thread stack, or when a file
descriptor is closed and a new one within the same file descriptor
number is opened. This is needed to actually be able to do something
useful with these objects.
The new design assures that many ProcFS instances can be used at once,
with one backend for usage for all instances.
2021-06-12 01:23:58 +00:00
|
|
|
|
|
|
|
// Note: This is needed so when we generate inodes for ProcFS, we know that
|
|
|
|
// we assigned a global Inode index to it so we can use it later
|
|
|
|
InodeIndex m_global_procfs_inode_index;
|
2018-11-13 00:36:31 +00:00
|
|
|
};
|
Kernel: Introduce the new ProcFS design
The new ProcFS design consists of two main parts:
1. The representative ProcFS class, which is derived from the FS class.
The ProcFS and its inodes are much more lean - merely 3 classes to
represent the common type of inodes - regular files, symbolic links and
directories. They're backed by a ProcFSExposedComponent object, which
is responsible for the functional operation behind the scenes.
2. The backend of the ProcFS - the ProcFSComponentsRegistrar class
and all derived classes from the ProcFSExposedComponent class. These
together form the entire backend and handle all the functions you can
expect from the ProcFS.
The ProcFSExposedComponent derived classes split to 3 types in the
manner of lifetime in the kernel:
1. Persistent objects - this category includes all basic objects, like
the root folder, /proc/bus folder, main blob files in the root folders,
etc. These objects are persistent and cannot die ever.
2. Semi-persistent objects - this category includes all PID folders,
and subdirectories to the PID folders. It also includes exposed objects
like the unveil JSON'ed blob. These object are persistent as long as the
the responsible process they represent is still alive.
3. Dynamic objects - this category includes files in the subdirectories
of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially,
these objects are always created dynamically and when no longer in need
after being used, they're deallocated.
Nevertheless, the new allocated backend objects and inodes try to use
the same InodeIndex if possible - this might change only when a thread
dies and a new thread is born with a new thread stack, or when a file
descriptor is closed and a new one within the same file descriptor
number is opened. This is needed to actually be able to do something
useful with these objects.
The new design assures that many ProcFS instances can be used at once,
with one backend for usage for all instances.
2021-06-12 01:23:58 +00:00
|
|
|
|
2021-07-28 06:59:24 +00:00
|
|
|
class ScopedDescriptionAllocation;
|
2021-06-22 18:22:17 +00:00
|
|
|
class FileDescriptions {
|
|
|
|
friend class Process;
|
|
|
|
|
|
|
|
public:
|
|
|
|
ALWAYS_INLINE const FileDescriptionAndFlags& operator[](size_t i) const { return at(i); }
|
|
|
|
ALWAYS_INLINE FileDescriptionAndFlags& operator[](size_t i) { return at(i); }
|
|
|
|
|
|
|
|
FileDescriptions& operator=(const Kernel::Process::FileDescriptions& other)
|
|
|
|
{
|
|
|
|
ScopedSpinLock lock(m_fds_lock);
|
|
|
|
ScopedSpinLock lock_other(other.m_fds_lock);
|
|
|
|
m_fds_metadatas = other.m_fds_metadatas;
|
|
|
|
for (auto& file_description_metadata : m_fds_metadatas) {
|
|
|
|
file_description_metadata.refresh_inode_index();
|
|
|
|
}
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
const FileDescriptionAndFlags& at(size_t i) const;
|
|
|
|
FileDescriptionAndFlags& at(size_t i);
|
|
|
|
|
|
|
|
void enumerate(Function<void(const FileDescriptionAndFlags&)>) const;
|
|
|
|
void change_each(Function<void(FileDescriptionAndFlags&)>);
|
|
|
|
|
2021-07-28 06:59:24 +00:00
|
|
|
KResultOr<ScopedDescriptionAllocation> allocate(int first_candidate_fd = 0);
|
2021-06-22 18:22:17 +00:00
|
|
|
size_t open_count() const;
|
|
|
|
|
|
|
|
bool try_resize(size_t size) { return m_fds_metadatas.try_resize(size); }
|
|
|
|
|
|
|
|
size_t max_open() const
|
|
|
|
{
|
|
|
|
return m_max_open_file_descriptors;
|
|
|
|
}
|
|
|
|
|
|
|
|
void clear()
|
|
|
|
{
|
|
|
|
ScopedSpinLock lock(m_fds_lock);
|
|
|
|
m_fds_metadatas.clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
// FIXME: Consider to remove this somehow
|
|
|
|
RefPtr<FileDescription> file_description(int fd) const;
|
|
|
|
int fd_flags(int fd) const;
|
|
|
|
|
|
|
|
private:
|
|
|
|
FileDescriptions() = default;
|
|
|
|
static constexpr size_t m_max_open_file_descriptors { FD_SETSIZE };
|
|
|
|
mutable SpinLock<u8> m_fds_lock;
|
|
|
|
Vector<FileDescriptionAndFlags> m_fds_metadatas;
|
|
|
|
};
|
|
|
|
|
2021-07-28 06:59:24 +00:00
|
|
|
class ScopedDescriptionAllocation {
|
|
|
|
AK_MAKE_NONCOPYABLE(ScopedDescriptionAllocation);
|
|
|
|
|
|
|
|
public:
|
|
|
|
ScopedDescriptionAllocation() = default;
|
|
|
|
ScopedDescriptionAllocation(int tracked_fd, FileDescriptionAndFlags* description)
|
|
|
|
: fd(tracked_fd)
|
|
|
|
, m_description(description)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
ScopedDescriptionAllocation(ScopedDescriptionAllocation&& other)
|
|
|
|
: fd(other.fd)
|
|
|
|
{
|
|
|
|
// Take over the responsibility of tracking to deallocation.
|
|
|
|
swap(m_description, other.m_description);
|
|
|
|
}
|
|
|
|
|
|
|
|
~ScopedDescriptionAllocation()
|
|
|
|
{
|
|
|
|
if (m_description && m_description->is_allocated() && !m_description->is_valid()) {
|
|
|
|
m_description->deallocate();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const int fd { -1 };
|
|
|
|
|
|
|
|
private:
|
|
|
|
FileDescriptionAndFlags* m_description { nullptr };
|
|
|
|
};
|
|
|
|
|
2021-06-22 18:22:17 +00:00
|
|
|
FileDescriptions& fds() { return m_fds; }
|
|
|
|
const FileDescriptions& fds() const { return m_fds; }
|
Kernel: Introduce the new ProcFS design
The new ProcFS design consists of two main parts:
1. The representative ProcFS class, which is derived from the FS class.
The ProcFS and its inodes are much more lean - merely 3 classes to
represent the common type of inodes - regular files, symbolic links and
directories. They're backed by a ProcFSExposedComponent object, which
is responsible for the functional operation behind the scenes.
2. The backend of the ProcFS - the ProcFSComponentsRegistrar class
and all derived classes from the ProcFSExposedComponent class. These
together form the entire backend and handle all the functions you can
expect from the ProcFS.
The ProcFSExposedComponent derived classes split to 3 types in the
manner of lifetime in the kernel:
1. Persistent objects - this category includes all basic objects, like
the root folder, /proc/bus folder, main blob files in the root folders,
etc. These objects are persistent and cannot die ever.
2. Semi-persistent objects - this category includes all PID folders,
and subdirectories to the PID folders. It also includes exposed objects
like the unveil JSON'ed blob. These object are persistent as long as the
the responsible process they represent is still alive.
3. Dynamic objects - this category includes files in the subdirectories
of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially,
these objects are always created dynamically and when no longer in need
after being used, they're deallocated.
Nevertheless, the new allocated backend objects and inodes try to use
the same InodeIndex if possible - this might change only when a thread
dies and a new thread is born with a new thread stack, or when a file
descriptor is closed and a new one within the same file descriptor
number is opened. This is needed to actually be able to do something
useful with these objects.
The new design assures that many ProcFS instances can be used at once,
with one backend for usage for all instances.
2021-06-12 01:23:58 +00:00
|
|
|
|
|
|
|
private:
|
2021-08-07 11:28:18 +00:00
|
|
|
SpinLockProtectedValue<Thread::ListInProcess>& thread_list() { return m_thread_list; }
|
|
|
|
SpinLockProtectedValue<Thread::ListInProcess> const& thread_list() const { return m_thread_list; }
|
|
|
|
|
|
|
|
SpinLockProtectedValue<Thread::ListInProcess> m_thread_list;
|
2018-11-07 17:30:59 +00:00
|
|
|
|
2021-08-07 11:28:18 +00:00
|
|
|
FileDescriptions m_fds;
|
2018-10-18 11:05:00 +00:00
|
|
|
|
2020-09-10 15:46:24 +00:00
|
|
|
const bool m_is_kernel_process;
|
2021-07-13 23:15:24 +00:00
|
|
|
Atomic<State> m_state { State::Running };
|
2019-12-11 19:36:56 +00:00
|
|
|
bool m_profiling { false };
|
2021-01-03 23:58:50 +00:00
|
|
|
Atomic<bool, AK::MemoryOrder::memory_order_relaxed> m_is_stopped { false };
|
2020-11-06 08:09:51 +00:00
|
|
|
bool m_should_dump_core { false };
|
2019-08-08 12:56:50 +00:00
|
|
|
|
2019-06-21 16:37:47 +00:00
|
|
|
RefPtr<Custody> m_executable;
|
|
|
|
RefPtr<Custody> m_cwd;
|
2020-01-10 22:14:04 +00:00
|
|
|
RefPtr<Custody> m_root_directory;
|
2020-01-12 18:42:01 +00:00
|
|
|
RefPtr<Custody> m_root_directory_relative_to_global_root;
|
2018-10-24 12:28:22 +00:00
|
|
|
|
2021-01-15 19:21:03 +00:00
|
|
|
Vector<String> m_arguments;
|
|
|
|
Vector<String> m_environment;
|
|
|
|
|
2019-11-06 15:52:54 +00:00
|
|
|
RefPtr<TTY> m_tty;
|
2018-10-30 12:59:29 +00:00
|
|
|
|
2021-08-06 11:49:36 +00:00
|
|
|
WeakPtr<Memory::Region> m_master_tls_region;
|
2019-09-07 13:50:44 +00:00
|
|
|
size_t m_master_tls_size { 0 };
|
|
|
|
size_t m_master_tls_alignment { 0 };
|
|
|
|
|
2021-07-17 19:09:51 +00:00
|
|
|
Mutex m_big_lock { "Process" };
|
|
|
|
Mutex m_ptrace_lock { "ptrace" };
|
2019-06-07 09:30:07 +00:00
|
|
|
|
2020-12-01 22:44:52 +00:00
|
|
|
RefPtr<Timer> m_alarm_timer;
|
2019-07-29 05:26:01 +00:00
|
|
|
|
2020-01-21 18:28:29 +00:00
|
|
|
VeilState m_veil_state { VeilState::None };
|
2021-06-06 19:03:19 +00:00
|
|
|
UnveilNode m_unveiled_paths { "/", { .full_path = "/" } };
|
Kernel: Add a basic implementation of unveil()
This syscall is a complement to pledge() and adds the same sort of
incremental relinquishing of capabilities for filesystem access.
The first call to unveil() will "drop a veil" on the process, and from
now on, only unveiled parts of the filesystem are visible to it.
Each call to unveil() specifies a path to either a directory or a file
along with permissions for that path. The permissions are a combination
of the following:
- r: Read access (like the "rpath" promise)
- w: Write access (like the "wpath" promise)
- x: Execute access
- c: Create/remove access (like the "cpath" promise)
Attempts to open a path that has not been unveiled with fail with
ENOENT. If the unveiled path lacks sufficient permissions, it will fail
with EACCES.
Like pledge(), subsequent calls to unveil() with the same path can only
remove permissions, not add them.
Once you call unveil(nullptr, nullptr), the veil is locked, and it's no
longer possible to unveil any more paths for the process, ever.
This concept comes from OpenBSD, and their implementation does various
things differently, I'm sure. This is just a first implementation for
SerenityOS, and we'll keep improving on it as we go. :^)
2020-01-20 21:12:04 +00:00
|
|
|
|
2020-02-02 19:26:27 +00:00
|
|
|
OwnPtr<PerformanceEventBuffer> m_perf_event_buffer;
|
2020-02-17 12:29:49 +00:00
|
|
|
|
2020-12-22 06:21:58 +00:00
|
|
|
FutexQueues m_futex_queues;
|
|
|
|
SpinLock<u8> m_futex_lock;
|
|
|
|
|
2020-03-28 08:47:16 +00:00
|
|
|
// This member is used in the implementation of ptrace's PT_TRACEME flag.
|
|
|
|
// If it is set to true, the process will stop at the next execve syscall
|
|
|
|
// and wait for a tracer to attach.
|
|
|
|
bool m_wait_for_tracer_at_next_execve { false };
|
2020-11-29 23:05:27 +00:00
|
|
|
|
|
|
|
Thread::WaitBlockCondition m_wait_block_condition;
|
2020-12-30 14:19:57 +00:00
|
|
|
|
2021-08-05 21:43:10 +00:00
|
|
|
struct CoredumpProperty {
|
|
|
|
OwnPtr<KString> key;
|
|
|
|
OwnPtr<KString> value;
|
|
|
|
};
|
|
|
|
|
|
|
|
Array<CoredumpProperty, 4> m_coredump_properties;
|
2021-01-15 19:29:13 +00:00
|
|
|
|
2021-01-28 07:41:18 +00:00
|
|
|
NonnullRefPtrVector<Thread> m_threads_for_coredump;
|
2021-06-06 21:40:03 +00:00
|
|
|
|
|
|
|
public:
|
2021-07-24 16:43:29 +00:00
|
|
|
using List = IntrusiveListRelaxedConst<Process, RawPtr<Process>, &Process::m_list_node>;
|
2018-10-16 09:01:38 +00:00
|
|
|
};
|
|
|
|
|
2021-07-24 16:43:29 +00:00
|
|
|
extern RecursiveSpinLock g_profiling_lock;
|
|
|
|
|
|
|
|
ProtectedValue<Process::List>& processes();
|
2018-11-08 15:09:05 +00:00
|
|
|
|
2021-05-16 09:36:52 +00:00
|
|
|
template<IteratorFunction<Process&> Callback>
|
2018-11-08 15:09:05 +00:00
|
|
|
inline void Process::for_each(Callback callback)
|
|
|
|
{
|
2021-02-23 19:42:32 +00:00
|
|
|
VERIFY_INTERRUPTS_DISABLED();
|
2021-07-24 16:43:29 +00:00
|
|
|
processes().with_shared([&](const auto& list) {
|
|
|
|
for (auto it = list.begin(); it != list.end();) {
|
|
|
|
auto& process = *it;
|
|
|
|
++it;
|
|
|
|
if (callback(process) == IterationDecision::Break)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
});
|
2018-11-08 15:09:05 +00:00
|
|
|
}
|
|
|
|
|
2021-05-16 09:36:52 +00:00
|
|
|
template<IteratorFunction<Process&> Callback>
|
2018-11-11 14:36:40 +00:00
|
|
|
inline void Process::for_each_child(Callback callback)
|
|
|
|
{
|
2020-08-08 15:32:34 +00:00
|
|
|
ProcessID my_pid = pid();
|
2021-07-24 16:43:29 +00:00
|
|
|
processes().with_shared([&](const auto& list) {
|
|
|
|
for (auto it = list.begin(); it != list.end();) {
|
|
|
|
auto& process = *it;
|
|
|
|
++it;
|
|
|
|
if (process.ppid() == my_pid || process.has_tracee_thread(pid())) {
|
|
|
|
if (callback(process) == IterationDecision::Break)
|
|
|
|
break;
|
|
|
|
}
|
2018-11-11 14:36:40 +00:00
|
|
|
}
|
2021-07-24 16:43:29 +00:00
|
|
|
});
|
2018-11-11 14:36:40 +00:00
|
|
|
}
|
|
|
|
|
2021-05-16 09:36:52 +00:00
|
|
|
template<IteratorFunction<Thread&> Callback>
|
2021-01-23 06:24:33 +00:00
|
|
|
inline IterationDecision Process::for_each_thread(Callback callback) const
|
2018-11-08 15:09:05 +00:00
|
|
|
{
|
2021-08-07 11:28:18 +00:00
|
|
|
return thread_list().with([&](auto& thread_list) -> IterationDecision {
|
|
|
|
for (auto& thread : thread_list) {
|
|
|
|
IterationDecision decision = callback(thread);
|
|
|
|
if (decision != IterationDecision::Continue)
|
|
|
|
return decision;
|
|
|
|
}
|
|
|
|
return IterationDecision::Continue;
|
|
|
|
});
|
2018-11-08 15:09:05 +00:00
|
|
|
}
|
|
|
|
|
2021-05-16 09:36:52 +00:00
|
|
|
template<IteratorFunction<Thread&> Callback>
|
2021-03-11 13:12:55 +00:00
|
|
|
inline IterationDecision Process::for_each_thread(Callback callback)
|
|
|
|
{
|
2021-08-07 11:28:18 +00:00
|
|
|
return thread_list().with([&](auto& thread_list) -> IterationDecision {
|
|
|
|
for (auto& thread : thread_list) {
|
|
|
|
IterationDecision decision = callback(thread);
|
|
|
|
if (decision != IterationDecision::Continue)
|
|
|
|
return decision;
|
|
|
|
}
|
|
|
|
return IterationDecision::Continue;
|
|
|
|
});
|
2021-03-11 13:12:55 +00:00
|
|
|
}
|
|
|
|
|
2021-05-16 09:36:52 +00:00
|
|
|
template<IteratorFunction<Process&> Callback>
|
2020-08-08 20:04:20 +00:00
|
|
|
inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback)
|
2018-11-08 15:09:05 +00:00
|
|
|
{
|
2021-07-24 16:43:29 +00:00
|
|
|
processes().with_shared([&](const auto& list) {
|
|
|
|
for (auto it = list.begin(); it != list.end();) {
|
|
|
|
auto& process = *it;
|
|
|
|
++it;
|
|
|
|
if (!process.is_dead() && process.pgid() == pgid) {
|
|
|
|
if (callback(process) == IterationDecision::Break)
|
|
|
|
break;
|
|
|
|
}
|
2019-03-23 21:03:17 +00:00
|
|
|
}
|
2021-07-24 16:43:29 +00:00
|
|
|
});
|
2018-11-08 15:09:05 +00:00
|
|
|
}
|
2019-02-21 14:45:31 +00:00
|
|
|
|
2021-05-16 09:36:52 +00:00
|
|
|
template<VoidFunction<Process&> Callback>
|
|
|
|
inline void Process::for_each(Callback callback)
|
|
|
|
{
|
|
|
|
return for_each([&](auto& item) {
|
|
|
|
callback(item);
|
|
|
|
return IterationDecision::Continue;
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
template<VoidFunction<Process&> Callback>
|
|
|
|
inline void Process::for_each_child(Callback callback)
|
|
|
|
{
|
|
|
|
return for_each_child([&](auto& item) {
|
|
|
|
callback(item);
|
|
|
|
return IterationDecision::Continue;
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
template<VoidFunction<Thread&> Callback>
|
|
|
|
inline IterationDecision Process::for_each_thread(Callback callback) const
|
|
|
|
{
|
2021-08-07 11:28:18 +00:00
|
|
|
thread_list().with([&](auto& thread_list) {
|
|
|
|
for (auto& thread : thread_list)
|
|
|
|
callback(thread);
|
|
|
|
});
|
2021-05-16 09:36:52 +00:00
|
|
|
return IterationDecision::Continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<VoidFunction<Thread&> Callback>
|
|
|
|
inline IterationDecision Process::for_each_thread(Callback callback)
|
|
|
|
{
|
2021-08-07 11:28:18 +00:00
|
|
|
thread_list().with([&](auto& thread_list) {
|
|
|
|
for (auto& thread : thread_list)
|
|
|
|
callback(thread);
|
|
|
|
});
|
2021-05-16 09:36:52 +00:00
|
|
|
return IterationDecision::Continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<VoidFunction<Process&> Callback>
|
|
|
|
inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback)
|
|
|
|
{
|
|
|
|
return for_each_in_pgrp(pgid, [&](auto& item) {
|
|
|
|
callback(item);
|
|
|
|
return IterationDecision::Continue;
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
2020-01-07 18:17:35 +00:00
|
|
|
inline bool InodeMetadata::may_read(const Process& process) const
|
2019-02-21 14:45:31 +00:00
|
|
|
{
|
2020-01-02 22:45:52 +00:00
|
|
|
return may_read(process.euid(), process.egid(), process.extra_gids());
|
2019-02-21 14:45:31 +00:00
|
|
|
}
|
|
|
|
|
2020-01-07 18:17:35 +00:00
|
|
|
inline bool InodeMetadata::may_write(const Process& process) const
|
2019-02-21 14:45:31 +00:00
|
|
|
{
|
2020-01-02 22:45:52 +00:00
|
|
|
return may_write(process.euid(), process.egid(), process.extra_gids());
|
2019-02-21 14:45:31 +00:00
|
|
|
}
|
|
|
|
|
2020-01-07 18:17:35 +00:00
|
|
|
inline bool InodeMetadata::may_execute(const Process& process) const
|
2019-02-21 14:45:31 +00:00
|
|
|
{
|
2020-01-02 22:45:52 +00:00
|
|
|
return may_execute(process.euid(), process.egid(), process.extra_gids());
|
2019-02-21 14:45:31 +00:00
|
|
|
}
|
2019-03-23 21:03:17 +00:00
|
|
|
|
2020-08-08 15:32:34 +00:00
|
|
|
inline ProcessID Thread::pid() const
|
2019-03-23 21:03:17 +00:00
|
|
|
{
|
2020-08-02 02:04:56 +00:00
|
|
|
return m_process->pid();
|
2019-03-23 21:03:17 +00:00
|
|
|
}
|
2019-07-08 16:58:19 +00:00
|
|
|
|
2020-06-28 21:34:31 +00:00
|
|
|
#define REQUIRE_NO_PROMISES \
|
|
|
|
do { \
|
|
|
|
if (Process::current()->has_promises()) { \
|
2021-01-08 23:11:15 +00:00
|
|
|
dbgln("Has made a promise"); \
|
2020-06-28 21:34:31 +00:00
|
|
|
Process::current()->crash(SIGABRT, 0); \
|
2021-02-23 19:42:32 +00:00
|
|
|
VERIFY_NOT_REACHED(); \
|
2020-06-28 21:34:31 +00:00
|
|
|
} \
|
2020-01-12 01:17:30 +00:00
|
|
|
} while (0)
|
|
|
|
|
2020-06-28 21:34:31 +00:00
|
|
|
#define REQUIRE_PROMISE(promise) \
|
|
|
|
do { \
|
|
|
|
if (Process::current()->has_promises() \
|
|
|
|
&& !Process::current()->has_promised(Pledge::promise)) { \
|
2021-01-08 23:11:15 +00:00
|
|
|
dbgln("Has not pledged {}", #promise); \
|
2021-08-05 21:43:10 +00:00
|
|
|
(void)Process::current()->try_set_coredump_property( \
|
|
|
|
"pledge_violation"sv, #promise); \
|
2020-06-28 21:34:31 +00:00
|
|
|
Process::current()->crash(SIGABRT, 0); \
|
2021-02-23 19:42:32 +00:00
|
|
|
VERIFY_NOT_REACHED(); \
|
2020-06-28 21:34:31 +00:00
|
|
|
} \
|
2020-01-12 01:17:30 +00:00
|
|
|
} while (0)
|
2020-02-16 00:27:42 +00:00
|
|
|
}
|
2020-09-12 03:11:07 +00:00
|
|
|
|
2021-07-18 16:18:35 +00:00
|
|
|
#define VERIFY_PROCESS_BIG_LOCK_ACQUIRED(process) \
|
|
|
|
VERIFY(process->big_lock().own_lock());
|
|
|
|
|
|
|
|
#define VERIFY_NO_PROCESS_BIG_LOCK(process) \
|
|
|
|
VERIFY(!process->big_lock().own_lock());
|
|
|
|
|
2020-09-12 03:11:07 +00:00
|
|
|
inline static String copy_string_from_user(const Kernel::Syscall::StringArgument& string)
|
|
|
|
{
|
|
|
|
return copy_string_from_user(string.characters, string.length);
|
|
|
|
}
|
2021-01-08 23:11:15 +00:00
|
|
|
|
2021-05-28 07:29:16 +00:00
|
|
|
inline static KResultOr<NonnullOwnPtr<KString>> try_copy_kstring_from_user(const Kernel::Syscall::StringArgument& string)
|
|
|
|
{
|
|
|
|
return try_copy_kstring_from_user(string.characters, string.length);
|
|
|
|
}
|
|
|
|
|
2021-01-08 23:11:15 +00:00
|
|
|
template<>
|
|
|
|
struct AK::Formatter<Kernel::Process> : AK::Formatter<String> {
|
|
|
|
void format(FormatBuilder& builder, const Kernel::Process& value)
|
|
|
|
{
|
|
|
|
return AK::Formatter<String>::format(builder, String::formatted("{}({})", value.name(), value.pid().value()));
|
|
|
|
}
|
|
|
|
};
|